CHAPTER 9

DOT GRAPHICS

Subjects we'll cover in Chapter 9 include-

- This printer's bit image graphics capabilities;
- Printing a pre-defined shape;
- Plotting a calculated shape;
- 24-pin dot graphics.

In Chapter 8 you were introduced to a form of computer graphics; you were able to actually define characters dot by dot. In this chapter you'll learn to use the same principles to make your printer print whole pages of dot graphics! We'll show you how to use dot graphics to create "super download characters". In addition, you'll see how your printer can be used as a graphics plotter. This can have some practical business applications as well as create some terrific computer art!

COMPARING DOT GRAPHICS WITH DOWNLOAD CHARACTERS

A good understanding of dot graphics requires an understanding of how dot matrix printers work; you may want to review the first few pages in Chapter 8. The principles for dot graphics are the same as those for download characters.

There are some differences in the way they are implemented however. While download commands can be used to define a character between one and fifteen columns of dots wide, dot graphics commands can be used to define a shape as narrow as one column of dots wide or as wide as 3264 dots!
So when do you use graphics and when do you use download characters? Practically anything you can do with graphics you can do with download characters, and vice versa. A clever programmer could actually plot a mathematical curve using
download characters or use strings of graphics data as userdefined characters. But why do it the hard way? There are several instances when dot graphics is clearly the best way to approach the problem:

- If the graphics image to be printed is wider than 15 dots.
- If an image is to be printed just one time, as opposed to a frequently used "text" character.

USING THE DOT GRAPHICS COMMAND

This printer has one command that allows you to use any of the ten graphics modes. The syntax of the command is:

〈ESC〉"*" n0 n1 n2 m1 m2
Just like many of the other codes you have learned, the command starts with an escape sequence ($\langle\mathrm{ESC}\rangle$ "*" in this case). This is followed by $n 0$, which specifies the print density as shown in Table 9-1. But unlike the other codes there can be any number of graphics data bytes following the command. That's where $n 1$ and $n 2$ come in; they are used to tell the printer how many columns of graphics data to expect.

Table 9-1
Graphics modes

$\boldsymbol{n 0}$	Pins	Mode	Print density
0	8	Normal density	60 dots/inch
1	8	Double density	120 dots/inch
2	8	Double density	120 dots/inch
3	8	Quadruple density	240 dots/inch
4	8	Semi-double density	80 dots/inch
6	8	CRT graphics	90 dots/inch
32	24	Normal density	60 dots/inch
33	24	Double density	120 dots/inch
38	24	CRT graphics	90 dots/inch
39	24	Triple density	180 dots/inch

- Specifying the number of columns of dots

To figure the values of $n 1$ and $n 2$, you'll need to figure out how wide your graphics image will be. Then comes the fun part: converting one number (the number of columns of dots) into two! Why is it necessary to use two numbers to tell the printer
the number of graphics codes to expect? Because the largest number we can send in one byte (that's what the BASIC CHR $\$($) function sends: one byte) is 255 . And with the normal density graphics it's possible to have a graphics image as wide as 816 dots. So to figure out how many columns of graphics data to expect, your printer multiplies $n 2$ by 256 and adds the value of $n 1$ to the product. If you divide the number of columns by 256 , then $n 2$ is the quotient and $n 1$ is the remainder (why not let your computer figure it out for you: if the number of columns is assigned to variable X , then $n 1=\mathrm{X}$ MOD 256 and $n 2=\mathrm{INT}(\mathrm{X} / 256)$). Table 9-2 might make things even easier.

Table 9-2
Calculating $\boldsymbol{n} 1$ and $\boldsymbol{n} \mathbf{2}$

If the number of columns, X, ranges from:	Then $\boldsymbol{n} \mathbf{1}$ is:	and \boldsymbol{n} 2 is:
1 to 255	X	0
256 to 511	$\mathrm{X}-256$	1
512 to 767	$\mathrm{X}-512$	2
768 to 1023	$\mathrm{X}-768$	3
1024 to 1279	$\mathrm{X}-1024$	4
1280 to 1535	$\mathrm{X}-1280$	5
1536 to 1791	$\mathrm{X}-1536$	6
1792 to 2047	$\mathrm{X}-1792$	7
2048 to 2303	$\mathrm{X}-2048$	8
2304 to 2559	$\mathrm{X}-2304$	9
2560 to 2815	$\mathrm{X}-2560$	10
2816 to 3071	$\mathrm{X}-2816$	11
3072 to 3264	$\mathrm{X}-3072$	12

When you are using the 24 -pin graphics modes you must send three bytes of data for each dot column. Therefore, you refer to dot columns instead of bytes of graphics data when calculating $n 1$ and $n 2$. (We will explain how these three bytes are interpreted later.)

Specifying the graphics data
Now that we've told the printer how much data to expect, we better figure out how to send that information! Just as you do with download characters, with dot graphics you have control over firing of every single pin of the print head. When this printer produces 8 -pin dot graphics modes, it prints with every third pin. It acts like a printer with nine wires that can only pro-
duce 8-pin graphics. In Figure 9-1, you can see that we've labelled each pin on the print head with a number as we did with download characters. And specifying pins to fire is done in the same way: to fire the second pin from the top, for instance, send a CHR\$(64). Firing several pins at once is done in a similar fashion. For example, to print the first, third, and fourth dots, add their values $(128+32+16)$ to send this total: CHR $\$(176)$. This is one byte of graphics data; it would replace $m 1$ in our format statement.

Figure 9-1. Starting with the most significant bit at the top, each third pin of the print head is assigned a value which is a power of two in case of 8 -pin graphics modes.

A short program should demonstrate how to implement the graphics command. The program below gave us this printout:

```
30 WID=100
40 OPEN "LPT1:" AS #1 : WIDTH #1,255
50 PRINT*1, CHR$(27);"*";CHR$(0);
60 PRINT#1, CHR$(WID MOD 256);
70 PRINT#1, CHR$(INT(WID/256));
80 FOR I=0 TO WID-1
90 J=1+SIN(I*PI/32)
100 PRINT#1, CHR$(2^INT(J*3.5+.5));
110 NEXT I
120 LPRINT
130 CLOSE*1
```

In lines 50 to 70 , we've selected 8 -pin normal density graphics and said that 100 characters of graphics data would follow. The loop between lines 80 and 110 is repeated to plot 100 points along a curve. This is an example of plotting a very simple mathematical function (a sine wave) to create a design. The mathematical concepts (such as sine and pi) demonstrated here are not important; you don't have to be a math whiz to use this printer's graphics.

Combining text and graphics
It's also possible to mix text and graphics in one line. This can be useful for labeling charts or graphs, or even inserting fancy graphics in text. Try adding these lines to our program:

45 PRINT\#1, "WOW!";
115 PRINT\#1, "THIS IS GREAT!";

Now if you run the program you should get a printout that looks like this:

WOW!

But there is one thing to be careful of: all graphics data must print on the same line. The graphics command is turned off at the end of each line, even if you have specified that more graphics codes follow. To see what we mean, change line 30 to plot 1000 points and run the program.

WOW! THIS IS GREAT!

This will make the sine wave pattern long enough to go off the page.

As you can see, your printer printed graphics up to the end of the line, then ignored the rest of the graphics data and returned to normal text on the next line.

PRINTING A DESIGN OR LOGO

Since you control the firing of every pin, you can print nearly anything with your printer that can draw (and probably better, if you're like most computer users!). You can be used for creating "computer art" or drawing maps. Or, as we'll show you here, you can use dot graphics to print your logo at the top of each letter you print.

Designing an image to print with dot graphics is much like designing download characters. The best way to start is to lay out your image on graph paper. Since you can print eight row of dots with each pass of the print head, draw a heavy horizontal line every eight rows on your graph paper. And it may be helpful to write the dot values ($128,64,32$, etc.) down the left side of each row. Then after you've filled in the "dots" that you want to print, it's time to get out the old calculator again! Just as you did with download characters, add up the values of each column of dots; this makes up one byte.

C

Figure 9-2. By laying out the logo on graph paper, you can calculate all of the graphics data.

In the program below, we've taken the logo graphics information and put it into BASIC DATA statements. The program itself is short and simple. The loop starting at line 100 reads the data statements into a string array variable called LOGO\$. In line 170 we change the line spacing to $24 / 180$ inch so that the lines of graphics data will connect vertically. The actual printing is done in the loop between lines 180 and 210 ; line 190 sends the graphics control code to the printer and line 200 sends one line of graphics data.
The printout from the program is shown right below the program.

10 ' Prints S\&S logo
20 LINE. $8 \$=\operatorname{CHR} \$(27)+" 3 "+C H R \$(24) "$
30 ' Set line spacing to $1 / 6$ inch
40 LINE. 12\$=CHR\$(27)+"A"+CHR\$(12)+CHR\$(27)+"2"
50 ' Select dot graphics
60 GRAPHIC $\$=$ CHR $\$(27)+$ CHR $\$(42)+$ CHR $\$(0)$
70 DIM LOGO\$(4)
80 WIDTH "LPT1:",255

90 ' Read data
100 FOR ROW=1 TO 4
110 FOR COLUMN=1 TO 100
120 READ P
130 LOGO\$(ROW) $=$ LOGOS (ROW) + CHR\$ (P)
140 NEXT COLUMN
150 NEXT ROW
160 • Print row
170 LPRINT LINE. $8 \$$;
180 FOR ROW=1 TO 4
190 LPRINT GRAPHIC\$;CHR\$(100);CHR\$(0);
200 LPRINT LOGO\$(ROW)
210 NEXT ROW
220 LPRINT LINE. $12 \$$
230 - Row 1
240 DATA $0,0,0,0,1,3,7,7,7,15$
250 DATA 14, 14, 14, 14, 14, 7, 7, 3, 3, 15
260 DATA $15,15,0,0,0,0,0,0,0,0$
270 DATA $0,1,3,3,7,7,15,14,14,14$
280 DATA $14,15,7,7,7,3,0,0,0,0$
290 DATA $0,0,0,0,0,0,0,0,0,0$
300 DATA $0,0,0,0,0,0,0,0,0,0$
310 DATA $0,0,0,0,1,3,7,7,7,15$
320 DATA $14,14,14,14,14,7,7,3,3,15$
330 DATA $15,15,0,0,0,0,0,0,0,0$
340 - Row 2
350 DATA $0,0,60,255,255,255,255,255,143,15$
360 DATA 7, 7, 7, 7, 3, 3, 3,131,193,241
370 DATA $240,240,0,0,0,0,0,0,0,1$
380 DATA $121,253,253,255,255,255,143,7,7,7$
390 DATA $31,253,252,248,248,240,192,0,7,15$
400 DATA $31,31,15,7,3,0,0,0,0,0$
410 DATA $0,0,0,0,0,0,0,0,0,0$
420 DATA $0,0,60,255,255,255,255,255,143,15$
430 DATA $7,7,7,7,3,3,3,131,193,241$
440 DATA $240,240,0,0,0,0,0,0,0,0$
450 ' Row 3
460 DATA $0,31,31,3,129,128,192,192,192,192$
470 DATA $192,224,224,224,224,240,255,255,255,255$
480 DATA $255,127,0,0,0,0,63,127,255,255$
490 DATA $255,255,193,128,128,128,128,192,224,240$
500 DATA $252,255,255,255,127,63,31,7,7,31$
510 DATA $254,252,248,224,128,0,0,3,7,7$
520 DATA $7,3,0,0,0,0,0,0,0,0$
530 DATA $0,31,31,3,129,128,192,192,192,192$
540 DATA $192,224,224,224,224,240,255,255,255,255$

```
550 DATA 255,127, 0, 0, 0, 0, 0, 0, 0, 0
560 ' Row }
5 6 0 \text { DATA 0,248,248,240,224,224,112,112, 56, 56}
570 DATA 56, 56, 56,120,120,240,240,224,224,192
580 DATA 128, 0, 0, 0, 0, 0,192,224,240,240
590 DATA 240,248,248,248,120,120, 56, 56, 56, 56
600 DATA 48,112,224,224,224,224,240,240,248,248
610 DATA 120,120, 56, 56, 56, 56,120,240,224,224
6 2 0 ~ D A T A ~ 1 9 2 , 1 2 8 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0
630 DATA 0,248,248,240,224,224,112,112, 56, 56
6 4 0 \text { DATA 56, 56, 56,120,120,240,240,224,224,192}
6 5 0 ~ D A T A ~ 1 2 8 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0
```


PLOTTING WITH YOUR PRINTER

This section of the manual gets into more serious BASIC programming just because it's required in order to have the computer act as a plotter driver. Don't be intimidated; while it's beyond the scope of this manual to teach BASIC, if you try the examples and take it slowly you should be doing some fancy plotting of your own before you know it.

If designing and calculating dot graphics images by laying them out on graph paper seems too tedious to you, then let the computer do the work for you! With your computer doing the calculations and your printer plotting the output, you can come up with some terrific business graphs, charts, and mathematical function plots.

The best way to do this is to set up an array in memory. This is your "graph paper." The first thing to do is to determine how big you want your output to be; this will determine the size of your array. (If you have grandiose plans to fill an entire page with plotter output, you better have lots of memory in your computer. With 60 dots per inch horizontally and 60 dots per inch vertically, it takes at least 480 bytes of memory for each square inch of plotted area. That doesn't sound so bad - but an area 12 inches square requires over 64 K !)

Your array should be two-dimensional (just like graph paper) where one dimension will be the number of columns of dots and
the other dimension is the number of printing lines (remember that you can have up to eight rows of dots per printed line with the 8 -pin graphics mode).

Here's a program that will use calculated-shape graphics to plot a circle. As you'll see, by changing a few lines it can be used to plot virtually any shape.

```
10 ' Plotting program
20 ' Set program constants
30 MAXCOL%=90 :MAXROW%=14
40 DIM BIT%(MAXCOL%,MAXROW%)
50 MASK%(1)=128 :MASK%(5)=8
60 MASK%(2)=64 :MASK%(6)=4
70 MASK%(3)=32 :MASK%(7)=2
80 MASK%(4)=16 :MASK%(8)=1
90 LX=20 :LY=20
100 LXFAC=90/LX :LYFAC=90/LY
110 ' Plot curve
120 GOSUB }60
130 ' Send bit image map to printer
140 OPEN "LPT1:" AS #1 : WIDTH #1,255
150 PRINT#1, CHR$(27);"3";CHR$(24);
160 FOR ROW%=0 TO MAXROW%
170 PRINT#1, CHR$(27);"*";CHR$(0);
    CHR$(MAXCOL%);CHR$(0);
180 FOR COL%=1 TO MAXCOL%
190 PRINT#1, CHR$(BIT%(COL%,ROW%));
200 NEXT COL%
210 PRINT*1, CHR$(10)
220 NEXT ROW%
230 PRINT#1, CHR$(27);"A";CHR$(12);CHR$(27);"2"
240 CLOSE*1 : END
250
260 ' Subroutine to draw a line from X1,Y1 to
        X2,Y2
270 '
280 XL=X2-X1 :YL=Y2-Y1
290 NX=ABS(XL*LXFAC) :NY=ABS(YL*LYFAC)
300 IF NX<NY THEN NX=NY
310 NS%=INT (NX+1)
320 DX=XL/NS% :DY=YL/NS%
330 FOR IG=1 TO NS%
340 X1=X1+DX : Y1=Y1+DY
350 GOSUB 400
360 NEXT 1%
```

```
370 RETURN
4 0 0
410 ' Subroutine to plot a point at X1,Y1
4 2 0
430 XX=X1*LXFAC :YY=Y1*LYFAC
440 COL%=INT (XX)+1
450 ROW%=INT(YY/8)
460 XIT&=INT (YY-ROW8*8)+1
470 BIT%(COL%,ROW%)=BIT%(COL%,ROW%)
    OR MASK%(XIT%)
4 7 0 ~ R E T U R N
6 0 0
610 ' Subroutine to plot a circle
6 2 0
6 3 0 ~ R A D = 9
640 X1=19 :Y1=10
650 FOR ANG%=0 TO 360 STEP 10
660 RANG=ANG%*6.28/360
670 X2=RAD*COS(RANG)+10 :Y2=RAD*SIN(RANG)+10
6 8 0 \text { GOSUB 250}
6 9 0 ~ N E X T ~ A N G \% ~
700 RETURN
```


- How the program works

In the program above, we've created an array called BIT\%, which is dimensioned in line 40 . You'll note that instead of using numeric constants to dimension the array, we used the variable MAXCOL\% and MAXROW\%. This way, if your computer has enough memory and you want to plot a larger image, all you need to change are the values in line 30 . The array MASK\% contains the values of the dots. In lines 90 and 100 we've defined some other variables you'll be interested in: LX, LXFAC, LY, and LYFAC are used as scaling factors. By changing these values, you can change the size of your printed image or even
distort it (you can, for example, make our circle print as an ellipse). Experiment a little bit!

The main calculations for plotting the image are done in the subroutine starting at program line 600 . This is where you put the formulas that you want to plot. By changing just the lines after 600 (with some creative mathematics!) you can plot any function - limited only by your imagination. Some examples are shown at the end of this section.
What the program section starting at line 600 actually does is to calculate starting and ending points for a line (in our circle the "lines" are very short - sometimes the starting and ending points are the same). The coordinates of the starting point of the line are assigned to variables X1 and Y1. The line ends at point X 2 , Y2. When these coordinates have been calculated, a subroutine call is made to line 250 . This subroutine calculates the coordinates of individual points along that line.

After these coordinates have been determined, the subroutine at line 400 is called. This routine turns "on" an individual dot in our array called BIT\%. (Keep in mind that no printing has been done yet; the computer is still drawing the image on its "graph paper" in memory.) The way an individual dot is turned on is using the logical OR function in line 470.
When all the points have been plotted in memory, printing begins at line 130 . We first set the line spacing to $24 / 180$ inch using the $\langle\mathrm{ESC}\rangle$ " 3 " command. This is so that there are no gaps between rows of dots. Then the loop from line 150 to line 220 prints the dot graphics image one line at a time.

As you can see, by taking the program in small pieces and analyzing it, programming does not have to be difficult. If you want to try some other plots, try these (replace lines after 600 with the lines below). The printouts from each program are shown below the listing.

```
6 0 0
610 ' Subroutine to plot a star
6 2 0
6 3 0 ~ R A D = 9
640 FOR ANG%=0 TO 360 STEP 45
690 RANG=ANG%*3.14159/180
700 RANG2=(ANG%+135)*3.14159/180
710 X1=RAD*COS(RANG)+10
720 Y1=RAD*SIN(RANG)+10
730 X2=RAD*COS(RANG2)+10
```


740 Y2=RAD*SIN(RANG2) +10
 750 GOSUB 250
 760 NEXT ANG\%
 770 RETURN

600 •
610 ' Subroutine to plot a sine wave
620 ,
630 X1=0 : Y1=10 : X2=20 :Y2=10
640 GOSUB 250
650 X1=10 : $\mathrm{Y} 1=0$: X2=10 :Y2=20
660 GOSUB 250
670 X1=0 : Y $1=10$
680 FOR X2=0 TO 20 STEP . 2
690 Y2 $=10-9 * \operatorname{SIN}\left(3.14159^{*} \times 2 / 10\right)$
700 GOSUB 250
710 NEXT X2
720 RETURN

USING THE 24-PIN GRAPHICS MODE

Up until now all of the dot graphics printing we have done has been with the 8 -pin graphics modes. This can give you some pretty sharp images at great speed. Sometimes though, you may want to create an image with even higher resolution. This printer has 24 -pin graphics modes you can use, as shown in Table 9-1.

The 24 -pin dot graphics mode uses all 24 pins in the printhead. The 24 pins are mapped as three eight-bit bytes stacked vertically (as shown in Figure 9-3). This means that for each pin column of 24 -pin graphics (as specified by $n 1$ and $n 2$) you must send three bytes of graphics data.

Figure 9-3. With the 24 -pin graphics modes, each pin column of graphics is divided into three bytes.

Now, let's try to print the 24 -pin graphics. Here is the program to print the logo with 24 -pin dot graphics.

10 ' Prints S\&S logo (24-pin)
20 LINE. $8 \$=$ CHR $\$(27)+" 3 "+C H R \$(24) "$
30 ' Set line spacing to $1 / 6$ inch
40 LINE. 12\$=CHR\$(27)+"A"+CHR\$(12)+CHR\$(27)+"2"
50 ' Select dot graphics
60 GRAPHIC $\$=$ CHR $\$(27)+$ CHR $\$(42)+$ CHR $\$(32)$
70 DIM LOGO1\$(2) : DIM LOGO2\$(2)
80 WIDTH "LPT1:",255
90 - Read data
100 FOR ROW=1 TO 2
110 FOR COLUMN=1 TO 150
120 READ P
130 LOGO1\$(ROW) $=$ LOGO1\$(ROW) + CHR $\$(\mathrm{P})$
140 NEXT COLUMN
150 FOR COLUMN $=151$ TO 300
160 READ P
170 LOGO2\$ (ROW) $=$ LOGO2\$ (ROW) + CHR\$ (P)
180 NEXT COLUMN
190 NEXT ROW
200 ' Print row
210 LPRINT LINE. $8 \$$
220 FOR ROW=1 TO 2
230 LPRINT GRAPIHC\$;CHR\$(100);CHR\$(0);
240 LPRINT LOGO1\$;LOGO2\$
250 NEXT ROW
260 LPRINT LINE. $12 \$$
270 END
280 ' Row 1
290 DATA $0,0,0,0,0,31,0,60,31$
300 DATA $0,255,3,1,255,129,3,255,128$
310 DATA $7,255,192,7,255,192,7,143,192$
320 DATA $15,15,192,14,7,192,14,7,224$
330 DATA $14,7,224,14,7,224,14,3,224$
340 DATA $7,3,240,7,3,255,3,131,255$
350 DATA $3,193,255,15,241,255,15,240,255$
360 DATA $15,240,127,0,0,0,0,0,0$
370 DATA $0,0,0,0,0,0,0,0,63$
380 DATA $0,0,127,0,0,255,0,1,255$
390 DATA $0,121,255,1,253,255,3,253,193$
400 DATA $3,255,128,7,255,128,7,255,128$
410 DATA $15,143,128,14,7,192,14,7,224$
420 DATA $14,7,240,14,31,252,15,253,255$
430 DATA $7,252,255,7,248,255,7,248,127$
440 DATA $3,240,63,0,192,31,0,0,7$
450 DATA $0,7,7,0,15,31,0,31,254$
460 DATA $0,31,252,0,15,248,0,7,224$

470 DATA $0,3,128,0,0,0,0,0,0$ 480 DATA $0,0,3,0,0,7,0,0,7$ 490 DATA $0,0,7,0,0,3,0,0,0$ 500 DATA $0,0,0,0,0,0,0,0,0$ 510 DATA $0,0,0,0,0,0,0,0,0$ 520 DATA $0,0,0,0,0,0,0,0,31$ 530 DATA $0,60,31,0,255,3,1,255,129$
540 DATA $3,255,128,7,255,192,7,255,192$
550 DATA $7,143,192,15,15,192,14,7,192$
560 DATA 14, 7,224, 14, 7,224. 14, 7,224
570 DATA $14,3,224,7,3,240,7,3,255$
580 DATA $3,131,255,3,193,255,15,241,255$
590 DATA $15,240,255,15,240,127,0,0,0$
600 DATA $0,0,0,0,0,0,0,0,0$
610 DATA $0,0,0,0,0,0,0,0,0$
620 DATA $0,0,0$
630 ' Row 2
640 DATA $0,0,0,248,0,0,248,0,0$
650 DATA $240,0,0,224,0,0,224,0,0$
660 DATA $112,0,0,112,0,0,56,0,0$
670 DATA $56,0,0,56,0,0,56,0,0$
680 DATA $56,0,0,120,0,0,120,0,0$
690 DATA $240,0,0,240,0,0,224,0,0$
700 DATA 224, $0,0,192,0,0,128,0,0$
710 DATA $0,0,0,0,0,0,0,0,0$ 720 DATA $0,0,0,0,0,0,192,0,0$
730 DATA 224, $0,0,240,0,0,240,0,0$
740 DATA $240,0,0,248,0,0,248,0,0$
750 DATA $248,0,0,120,0,0,120,0,0$
760 DATA $56,0,0,56,0,0,56,0,0$
770 DATA $56,0,0,48,0,0,112,0,0$
780 DATA 224, $0,0,224,0,0,224,0,0$
790 data $224,0,0,240,0,0,240,0,0$
800 DATA $248,0,0,248,0,0,120,0,0$
810 DATA $120,0,0,56,0,0,56,0,0$
820 DATA $56,0,0,56,0,0,120,0,0$
830 DATA $240,0,0,224,0,0,224,0,0$
840 DATA 192, $0,0,128,0,0,0,0,0$
850 DATA $0,0,0,0,0,0,0,0,0$
860 DATA $0,0,0,0,0,0,0,0,0$
870 DATA $0,0,0,0,0,0,248,0,0$
880 DATA $248,0,0,240,0,0,224,0,0$
890 DATA 224, $0,0,112,0,0,112,0,0$
900 DATA $56,0,0,56,0,0,56,0,0$
910 DATA $56,0,0,56,0,0,120,0,0$
920 DATA $120,0,0,240,0,0,240,0,0$

930 DATA 224,	0,	0,224,	0,	0,	192,	0,	0	
940	DATA 128,	0,	0,	0,	0,	0,	0,	0,
950	0							
960 DATA	0,	0,	0,	0,	0,	0,	0,	0,
96	0							
970	DATA	0,	0,	0,	0,	0,	0,	0,

This program is similar to the previous one. In this program, we've taken the logo graphics information and put it into BASIC DATA statements. The program itself is short and simple. The loop starting at line 100 reads the data statements into string arrays variable called LOGO1\$ and LOGO2\$. In line 210 we change the line spacing to $24 / 180$ inch so that the lines of graphics data will connect vertically. The actual printing is done in the loop between 210 and 250 ; line 230 sends the graphics control code (24 -pin normal density) to the printer and line 240 sends one line of graphics data.

The printout from this program is shown below.

Now, let's use your printer to plot with the 24 -pin graphics mode. Load the plotting program again, and change the lines $40,160,170$, and 190, then add the following two lines to the previous plotting program. You can get the high-resolution results as shown below!

40 DIM BIT\% (MAXCOL6*3,MAXROW\%)
160 FOR ROW\%=0 TO MAXROW\%-1 STEP 3
170 PRINT\#1, CHR\$(27);"*";CHR\$(39);CHR\$(MAXCOL\%);CHR\$(0);
190 PRINT\#1, CHR\$(BIT\% (COL\%,ROW\% + BYTE\%));

185 FOR BYTE\%=0 TO 2
195 NEXT BYTE\%

COMPATIBILITY WITH EXISTING SOFTWARE

With its ability to print ten different graphics densities，this printer＇s graphics abilities are advanced indeed．There are many programs，in fact，that are unable to use this printer＇s single graphics command 〈ESC〉＂＊＂for selecting the proper density．To maintain compatibility with this software，there are individual commands to select each of this printer＇s common graphics densities．These commands，which are shown in Table 9－3，can be used interchangeably with the corresponding〈ESC〉＂＊＂command．Like the commands you are already familiar with，these new commands are followed by two bytes to specify the number of graphics data bytes to print and then the data．

Table 9－3
 Alternative graphics commands

Density	Single command	Individual command
Noraml	$\begin{aligned} & \langle\mathrm{ESC}\rangle " * " \mathrm{CHR} \$(0) n 1 n 2 \\ & m 1 m 2 \ldots \end{aligned}$	$\begin{aligned} & \begin{array}{l} \langle\mathrm{ESC}\rangle " \mathrm{~K} " n 1 n 2 m 1 \\ m 2 \ldots \end{array} \end{aligned}$
Double	$\begin{aligned} & \langle\operatorname{ESC}\rangle " * " \mathrm{CHR} \$(1) n 1 n 2 \\ & m 1 m 2 \ldots \end{aligned}$	$\begin{aligned} & \langle\mathrm{ESC}\rangle " L " n 1 n 2 m 1 \\ & m 2 \ldots \end{aligned}$
Double	$\begin{aligned} & \text { 〈ESC〉"*" CHR\$(2) } n 1 n 2 \\ & m 1 m 2 \ldots \end{aligned}$	$\begin{aligned} & \langle\mathrm{ESC}\rangle " \mathrm{Y} " n 1 n 2 m 1 \\ & m 2 \ldots \end{aligned}$
Quadruple		$\begin{aligned} & \langle\mathrm{ESC}\rangle " Z " n 1 n 2 m 1 \\ & m 2 \ldots \end{aligned}$

REDEFINING ALTERNATE GRAPHICS CODES

At the end of this chapter，we＇ll discuss one mode that the printer offers to help you solve potential graphics problems．A redefining code allows you to change the density for graphics programs that use one of the four alternate codes．The com－ mand looks like this：

$$
\langle\mathrm{ESC}\rangle " ? " n 0 n 1
$$

Where $n 0$ is one of the four letters，＂ K ＂，＂L＂，＂ Y ＂，or＂ Z ＂， and $n 1$ is one of the numbers used with the $\langle\mathrm{ESC}\rangle$＂＊＂command， 0 to $4,6,32,33,38$ ，and 39 ．

This is a quick way to change the aspect ratio of the design that you are printing．Changing the graphics mode will change
the width without changing the height. However, you should make this change with caution.

If you change one of the 8 -pin graphics mode to a 24 -pin graphics mode, without changing the program that supplies the graphics data, you will print garbage (if the program prints at all). Remember, the 24 -pin graphics modes require three times as much graphics data as the 8 -pin graphics modes, and also, the data is arranged differently.

MEMO

CHAPTER 10

CARING FOR YOUR PRINTER

Subjects we'll cover in Chapter 10 include-

- Cleaning the printer;
- Changing the ribbon;
- Replacing the print head.

As any good mechanic will tell you, dust and heat are the biggest enemies of any mechanism. And your printer is no exception. The best maintenance is preventive maintenance, so the first step in keeping your printer healthy and happy is to make sure it's in a clean, dust-free location. The range of temperature should be comfortable for both you and your computer/printer system. (Please refer to Chapter 1 for more tips on locating your printer.)

CLEANING THE PRINTER

Another important rule for keeping your printer young and healthy is to clean it regularly-inside and out. Just use a damp towel every week or so (you can moisten the towel with alcohol for stubborn dirt, but be careful not to get any alcohol on the printer mechanism).

Use a soft brush to remove dust and lint from inside the printer, but be very careful not to bend or injure any electronic parts or wiring. It doesn't take much to do expensive damage; so don't fuss where you're not supposed to-besides periodic cleaning, the only other maintenance you'll have to do will be changing the ribbon cartridge, or the print head.

REPLACING THE RIBBON

This printer uses an "endless" ribbon cartridge, which means that the inked ribbon inside is recycled automatically. Eventually, though, printing will become too faint to read easily and you'll want to change the ribbon.

However, it is less expensive and more economical to replace only the ribbon portion inside the catridge. If this money saving method does interest you, read on.

Follow this procedure to remove the old ribbon and insert the new one in the original cartridge (not recommended for people with ten thumbs!).

1. First, obtain from your dealer the correct type of ribbon "sub-cassette" (not the spool-type ribbons used with some other printers).
2. Grasp both ends of the ribbon cartridge and pull the cartridge up and out of the printer. (Refer to Chapter 1 for illustrations of installing the refilled ribbon cartridge.)
3. Unhook the seven tabs of the cartridge cover carefully, and pry open the cartridge cover. Figure $10-1$ shows the numerous tabs for unhooking.

Figure 10-1. Unhook tabs to pry open the cartridge.
4. Press hard against the end of the idler gear holder to make a space between the holder and the ribbon drive gear, and remove the old ribbon and holder. See Figure 10-2.

Figure 10-2. Replace the ribbon sub-cassette.
5. Clean the inside of the cartridge, the area around the cartridge, and the ribbon drive gear and vicinity.
6. Take the new ribbon and holder out of the wrapper, remove the adhesive tape on the joint, and place the ribbon holder into the cassette as shown in Figure 10-2.
7. Pull out the ribbon and thread it as shown in Figure 10-3. It's easy for the ribbon to get twisted along its path, so be careful.
8. Firmly pull the idler gear towards you and guide the ribbon between the idler gear and the ribbon drive gear.
9. Remove the top and the bottom of the ribbon holder.
10. Replace the ribbon cartridge top cover.

Figure 10-3. Make sure that the ribbon is not twisted when you thread it through its path.
11. Now you're almost finished! Mark the next larger number on the silver label at the right-hand side of the cartridge cover to indicate the number of times the ribbon has been replaced. Five replacements is the maximum, after which you should buy a completely new cartridge.

REPLACING THE PRINT HEAD

The dot matrix print head has a remarkably long life. It will print perhaps $200,000,000$ dots per wire before you have to replace it. You'll know when that time comes when printing is too faint even after you replace the ribbon cartridge.
Warning: The print head gets hot during operation, so let it cool off before you touch it.

To replace the print head, start by turning off the Power switch and unplugging the power cord. Then follow this procedure:

1. Remove the printer cover and the ribbon cartridge.
2. Remove the two screws fastening the print head.

Figure 10-4. Replacement of the print head is simple.
3. Holding the print head and the head cable board securely, unplug the head cable.
4. Connect the cable of a new print head to the head cable board and fasten it reversing the above procedures.

Be absolutely sure that the connection between the print head and the cable is secure. A loose cable will cause you problems later.

MEMO

APPENDIX A

DIP SWITCH SETTINGS

The DIP (dual in-line package) switches control some of the functions of the printer. A DIP switch contains several individual switches. This printer has two DIP switches with 8 individual switches. Figure A-1 is a drawing of a typical DIP switch.

Figure A-1. A DIP switch is actually a series of several small switches.

All two DIP switches are readily accessible from the top. They are located in the compartment with the print head, and can be seen by opening the printer cover. To change the setting of a switch, use a ball-point pen or a similar object. The "on" position for a switch is towards the back of the printer; "off" is towards the front.

Never change the settings of any of the DIP switches when the power is on. Turn off both the printer and computer.
The individual switches on DIP switch 1 are called 1-1 through 1-8; those on switch 2 are 2-1 through 2-8.

Table A-1 summarizes the functions of DIP switches 1 and 2.

Figure A-2 The DIP switches are located under the printer cover.
Table A-1
DIP switch settings

Switch	ON	OFF
Switch 1		
$1-1$	10 CPI (pica pitch)	17 CPI (condensed pitch)
$1-2$	Set SELECT IN signal to LOW	As is the SELECT IN signal
$1-3$	Select internal characters	Select optional characters
$1-4$	LQ character set	Draft character set
$1-5$	Character set \#1	Character set \#2
$1-6$		
$1-7$	International character set selection - see Table A-2.	
$1-8$		
Switch 2		
$2-1$	No bottom margin	Set bottom margin to 1 inch
$2-2$	Set IBM mode	Set Standard mode
$2-3$	Ignore download characters	Enable download characters
$2-4$	Paper-out detected	Paper-out not detected
$2-5$	8 -bit interface	7-bit interface
$2-6$	LF must be from host	Auto LF with CR
$2-7$	Print "normal zero"	Print "slash zero"
$2-8$	1/6 inch line feed	$1 / 8$ inch line feed

SWITCH FUNCTIONS

Abstract

Switch Function 1-1 This switch selects the default character pitch. If this switch is on the default pitch is normal pica pitch (10 CPI). If this switch is off the default pitch is condensed pitch of pica (17 CPI). This switch is set on at the factory. 1-2 This switch controls the status of the SELECT IN signal of the parallel interface. If this switch is on, this signal is held to LOW. If this switch is off, the signal goes HIGH when the printer is not possible to get data. This switch is set on at the factory. 1-3 This switch selects the dafault character set. If this switch is on, the internal character set is selected as the default. If this switch is off the optional character set mounted on the Font 2 cartridge slot is selected (If the cartridge is not mounted, the internal character set is selected). This switch is set on at the factory. 1-4 This switch selects the default character style. If this switch is on the default character style is letter quality (LQ) characters. If this switch is off then the default character style is normal draft characters. This switch is set on at the factory. 1-5 This switch selects the default character set. If this switch is on the default character set is Character Set \#1. If this switch is off the default character set is Character Set \#2. If switch 2-2 is set off, this switch have no effect. This switch is set on at the factory. 1-6~1-8 These switches determine the default international character set, leaving the Japanese, Norwegian, and the second Danish, as shown in Table A-2. These switches are all set on at the factory.

Table A-2
International character sets

| Switch | U.S.A | France | Germany | England | Denmark | Sweden | Italy | Spain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1-6$ | ON | OFF | ON | OFF | ON | OFF | ON | OFF |
| $1-7$ | ON | ON | OFF | OFF | ON | ON | OFF | OFF |
| $1-8$ | ON | ON | ON | ON | OFF | OFF | OFF | OFF |

2-1 This switch determines the default bottom margin. When this switch is on, the bottom margin is not set at the power-on. When this switch is off, the bottom margin is automatically set to 1 inch. This switch is set on at the factory.
This switch selects the active control codes. Turn this switch on to use the "IBM" compatible mode. Turn this switch off to use the "Standard" mode. This switch is set on at the factory.
2-3 This switch controls the RAM condition. When this switch is on, the download character definitions are ignored and the RAM is used as the print buffer. When this switch is off, the download character definitions are enable to use and the print buffer is set to one line buffer. This switch is set on at the factory.
This switch disables the paper-out detector. If the switch is on, the printer will signal the computer when it runs out of paper and will stop printing. If the switch is off, the printer will ignore the paperout detector and will continue printing. This switch is set on at the factory. This switch controls the eighth bit of the parallel interface. If this switch is on, the printer will read all eight bits on the parallel interface. If this switch is off, the printer will only read the first seven bits on the parallel interface and ignores the eighth bit. This switch is set on at the factory.
When this switch is on, the computer must send a line feed command every time the paper is to advance. When this switch is off, the printer will automatically advance the paper one line every time it receives a carriage return. (Most BASICs send a line feed with every carriage return, therefore, this switch should usually be on.) This switch is set on at the factory.
2-7 This switch selects the print style of "zeroes". If this switch is on, the normal "zeroes" are printed. If this switch is off, the "slash zeroes" are printed. This switch is set on at the factory.

2-8 This switch sets the default line spacing. When this switch is on the default line spacing is set to $1 / 6$ inch. This means that the printer will advance the paper $1 / 6$ inch each time it receives a line feed. When this switch is off the default line spacing is $1 / 8$ inch. This switch is set on at the factory.

MEMO

APPENDIX B
 ASCII CODES AND CONVERSION CHART

Standard ASCII Codes			
Decimal	Hex.	Binary	
0	00	0000	0000
1	01	0000	0001
2	02	0000	0010
3	03	0000	0011
4	04	0000	0100
5	05	0000	0101
6	06	0000	0110
7	07	0000	0111
8	08	0000	1000
9	09	0000	1001
10	0 A	0000	1010
11	0 B	0000	1011
12	0 C	0000	1100
13	0 D	0000	1101
14	0 E	0000	1110
15	0 F	0000	1111
16	10	0001	0000
17	11	0001	0001
18	12	0001	0010
19	13	0001	0011
20	14	0001	0100
21	15	0001	0101
22	16	0001	0110
23	17	0001	0111
24	18	0001	1000
25	19	0001	1001
26	1 A	0001	1010
27	1 B	0001	1011
28	1 C	0001	1100
29	1 D	0001	1101
30	1 E	0001	1110
31	1 F	0001	1111
32	20	0010	0000

Control
 Character

Ctrl-@
Ctrl-A
Ctrl-B
Ctrl-C
Ctrl-D
Ctrl-E
$\mathrm{Ctrl}-\mathrm{F}$
Ctrl-G
$\mathrm{Ctrl}-\mathrm{H}$
Ctrl-I
Ctrl-J
Ctrl-K
Ctrl-L
Ctrl-M
Ctrl-N
Ctrl-O
Ctrl-P
Ctrl-Q DC1 DC1
Ctrl-R
Ctrl-S
Ctrl-T
Ctrl-U
Ctrl-V
Ctrl-W
Ctrl-X CAN CAN
Ctrl-Y
Ctrl-Z

Character set
Set $1 \quad$ Set2

BS

$$
\mathrm{HT}
$$

LF
VT

$$
\mathrm{FF}
$$

$$
\mathrm{CR}
$$

so
SI

$$
\mathrm{DC} 1
$$

$$
\mathrm{DC} 2
$$

DC3

DC4 S $\$$

EM

ESC

Space

Standard ASCII Codes

Decimal Hexadecimal Binary

35

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
67
68
69

70
71
72
73
74

75
76
$21 \quad 0010 \quad 0001$
$22 \quad 0010 \quad 0010$
$23 \quad 0010 \quad 0011$
$24 \quad 0010 \quad 0100$
$25 \quad 0010 \quad 0101$
$26 \quad 0010 \quad 0110$
$27 \quad 0010 \quad 0111$
$28 \quad 0010 \quad 1000$
$29 \quad 0010 \quad 1001$
$2 \mathrm{~A} \quad 0010 \quad 1010$
$2 \mathrm{~B} \quad 0010 \quad 1011$
$2 \mathrm{C} \quad 0010 \quad 1100$
$2 \mathrm{D} \quad 0010 \quad 1101$
$2 \mathrm{E} \quad 0010 \quad 1110$
$2 \mathrm{~F} \quad 0010 \quad 1111$
30
31
32
33
34
35
36
37
38
39
3 A
3 B
3 C
3D
3 E
3 F

41
42
43
44
45
46
47
48
49
4 A
4 B
4 C
4 C
$\begin{array}{ll}0011 & 0000 \\ 0011 & 0001\end{array}$
00110010
00110011
00110100
00110101
00110110
$\begin{array}{ll}0011 & 0111 \\ 0011 & 1000\end{array}$
$\begin{array}{ll}0011 & 1001\end{array}$
00111010
00111011
00111100
00111101
00111110
$\begin{array}{ll}0011 & 1111 \\ 0100 & 0000\end{array}$
$\begin{array}{ll}0100 & 0000 \\ 0100 & 0001\end{array}$
$0100 \quad 9010$
01000011
$0100 \quad 0100$
$0100 \quad 0101$
$0100 \quad 0110$
$0100 \quad 0111$
$0100 \quad 1000$
01001001
01001010
$0100 \quad 1011$
$0100 \quad 1100$

Standard ASCII Codes				Character set			
Decimal	Hexadecimal	Bin	ary				
77	4D	0100	1101	M	M	M	M
78	4E	0100	1110	N	N	N	N
79	4 F	0100	1111	0	0	0	0
80	50	0101	0000	P	P	P	
81	51	0101	0001	Q	Q	Q	Q
82	52	0101	0010	R	R	R	R
83	53	0101	0011	S	S	S	S
84	54	0101	0100	T	T	T	T
85	55	0101	0101	U	U	U	U
86	56	0101	0110	V	V	V	V
87	57	0101	0111	W	W	W	W
88	58	0101	1000	X	X	X	X
89	59	0101	1001	Y	Y	Y	Y
90	5A	0101	1010	Z	Z	Z	Z
91	5B	0101	1011	[[[
92	5 C	0101	1100	1	1	1	
93	5D	0101	1101	$]$]]	
94	5 E	0101	1110	\wedge	,	\cdots	
95	5 F	0101	1111	-	三	-	F
96	60	0110	0000				
97	61	0110	0001	a	a	a	a
98	62	0110	0010	b	b	b	b
99	63	0110	0011	c	c	c	c
100	64	0110	0100	d	d	d	d
101	65	0110	0101	e	e	e	e
102	66	0110	0110	f	f	f	f
103	67	0110	0111	g	8	g	8
104	68	0110	1000	h	h	h	h
105	69	0110	1001	i	i	i	i
106	6 A	0110	1010	j	j	j	j
107	6B	0110	1011	k	k	k	k
108	6 C	0110	1100	1	1	1	1
109	6 D	0110	1101	m	m	m	m
110	6 E	0110	1110	n	n	n	n
111	6 F	0110	1111	0	0	\bigcirc	0
112	70	0111	0000	p	p	p	p
113	71	0111	0001	q	q	q	q
114	72	0111	0010	r	r	r	r
115	73	0111	0011	5	s	5	S
116	74	0111	0100	t	t	t	t
117	75	0111	0101	u	u	U	u
118	76	0111	0110	v	v	v	v
119	77	0111	0111	w	w	w	W
120	78	0111	1000	x	x	x	x

Standard ASCII Codes

Decimal	Hexadecimal		ary
121	79	0111	1001
122	7 A	0111	1010
123	7 B	0111	1011
124	7 C	0111	1100
125	7D	0111	1101
126	7 E	0111	1110
127	7 F	0111	1111
128	80	1000	0000
129	81	1000	0001
130	82	1000	0010
131	83	1000	0011
132	84	1000	0100
133	85	1000	0101
134	86	1000	0110
135	87	1000	0111
136	88	1000	1000
137	89	1000	1001
138	8A	1000	1010
139	8 B	1000	1011
140	8 C	1000	1100
141	8 D	1000	1101
142	8 E	1000	1110
143	8 F	1000	1111
144	90	1001	0000
145	91	1001	0001
146	92	1001	0010
147	93	1001	0011
148	94	1001	0100
149	95	1001	0101
150	96	1001	0110
151	97	1001	0111
152	98	1001	1000
153	99	1001	1001
154	9A	1001	1010
155	9 B	1001	1011
156	9 C	1001	1100
157	9 D	1001	1101
158	9 E	1001	1110
159	9 F	1001	1111
160	A0	1010	0000
161	A 1	1010	0001
162	A2	1010	0010
163	A3	1010	0011
164	A 4	1010	0100

Character set		
Set 1	Set2	
$y \quad y$	y	y
z $\quad 2$	z	2
\{ 1	\{	\{
1 i	!	1
\})	\}	\}
$\sim \sim$	\sim	\sim
DEL	DEL	
	ζ	Ç
	ui	u
	é	é
	â	à
	ä	$\ddot{\text { a }}$
	à	a
	a	a
BEL	$¢$	¢
BS	ê	è
HT	$\ddot{\text { er }}$	$\ddot{\text { e }}$
LF	è	e
VT	i	i
FF	$\hat{\imath}$	i
CR	i	1
So	Ä	\ddot{A}
SI	A	A
	E	E
DC1	æ	æ
DC2	\ldots	E
DC3	ô	ô
DC4	ö	$\ddot{0}$
	\bigcirc	o
	û	$\hat{\mathbf{u}}$
	ù	ù
CAN	\ddot{y}	$\ddot{\mathrm{y}}$
EM	0	O'
	U	U
ESC	c	¢
	E	\mathcal{L}
	¥	\pm
	p	8
	f	f
á á	á	á
1 i	í	1
ó ó	ó	¢
ú ú	ú	u
$\tilde{\mathrm{n}}$ ก	ก	n

Standard ASCII Codes				Character set				
Decimal	Hexadecimal	Binary		Set 1		Set2		
165	A 5	1010	0101	N	N	N	N	
166	A6	1010	0110	a	a	－	a	
167	A 7	1010	0111	－	9	O	9	
168	A8	1010	1000	¿	i	i	i	
169	A9	1010	1001	r	－	－	－	
170	A A	1010	1010	\neg	ᄀ	7	7	
171	A B	1010	1011	$1 / 2$	$\frac{1}{2}$	$1 / 2$	$\frac{1}{2}$	
172	AC	1010	1100	1／4	1／4	$1 /$	$\frac{1}{4}$	
173	A D	1010	1101	i	i	i	i	
174	A E	1010	1110	＜	＜	＜	＜	
175	AF	1010	1111	$》$	》	》	》	
176	B0	1011	0000	III	III	il｜	星	
177	B 1	1011	0001	\pm		＊	1	
178	B 2	1011	0010	\％	\％	1	$\underline{0}$	
179	B3	1011	0011	1	1	1		
180	B 4	1011	0100	1	1	1	1	
181	B5	1011	0101	$=$	＝	\％	$=$	
182	B6	1011	0110	V	1	\dagger	－1	
183	B7	1011	0111	11	11	11	71	
184	B8	1011	1000	7	7	7	7	
185	B9	1011	1001	4	\downarrow	\downarrow	λ	
186	B A	1011	1010	II	\｜	$\\|$	\｜	
187	B B	1011	1011	7	7	7	7	
188	B C	1011	1100	\lrcorner	\Perp	\lrcorner	$』$	
189	B D	1011	1101	$\stackrel{\downarrow}{ }$	$\stackrel{1}{ }$	\downarrow	لا	
190	B E	1011	1110	\pm	\Rightarrow	\pm	\pm	
191	B F	1011	1111	7	7	7	7	
192	C 0	1100	0000	\llcorner	L	\llcorner	L	
193	C1	1100	0001	\perp	ค	\perp	\perp	
194	C 2	1100	0010		T	T	T	
195	C 3	1100	0011		F		F	
196	C4	1100	0100	－	－			
197	C5	1100	0101		\dagger		\dagger	
198	C6	1100	0110		＝		＝	
199	C7	1100	0111		－		｜r	
200	C8	1100	1000	14	는	L	¢	
201	C9	1100	1001	IT	［		If	
202	A	1100			上ㅡㄴ	上	$\underline{1}$	

Standard ASCII Codes				Character set			
Decimal	Hexadecimal	Bin	ary				
203	C B	1100	1011	\bar{T}	\bar{T}	TT	\bar{T}
204	C C	1100	1100	15	1	$1 /$	15
205	C D	1100	1101	$=$	$=$	$=$	＝
206	C E	1100	1110	H	年	䒚	行
207	C F	1100	1111	\pm	\pm	\pm	\pm
208	D0	1101	0000	H	n	\Perp	\Perp
209	D1	1101	0001	T	T	T	\bar{T}
210	D2	1101	0010	T	TI	TI	TI
211	D3	1101	0011	u．	u	4	4
212	D4	1101	0100	t	E	t	t
213	D5	1101	0101	F	F	F	F
214	D6	1101	0110	π	r	IT	1
215	D7	1101	0111	＋	＋	＋	H
216	D8	1101	1000	キ	\＃	＊	＊
217	D9	1101	1001	」	」	，	」
218	D A	1101	1010	Γ	Γ	Γ	Γ
219	D B	1101	1011		－	－	
220	D C	1101	1100				
221	D D	1101	1101	d	1	1	F
222	DE	1101	1110	1	1	1	
223	DF	1101	1111	－	\square	m	
224	E0	1110	0000	α	α	α	α
225	E1	1110	0001	B	β	β	B
226	E2	1110	0010	Γ	Γ	Γ	Γ
227	E3	1110	0011	T	π	T	π
228	E4	1110	0100	Σ	Σ	Σ	Σ
229	E5	1110	0101	σ	0	σ	σ
230	E6	1110	0110	μ	μ	μ	μ
231	E7	1110	0111	τ	τ	τ	$\boldsymbol{\tau}$
232	E8	1110	1000	\pm	Φ	Φ	Φ
233	E9	1110	1001	θ	θ	θ	θ
234	EA	1110	1010	Ω	Ω	Ω	Ω
235	E B	1110	1011	δ	δ	δ	δ
236	EC	1110	1100	∞	∞	∞	∞
237	ED	1110	1101	ϕ	\varnothing	ϕ	\varnothing
238	E E	1110	1110	ϵ	ϵ	ϵ	E
239	EF	1110	1111	n	ก	\bigcirc	\cap
240	F0	1111	0000	＝	\％	\pm	\％
241	F1	1111	0001	\pm	\pm	\pm	\pm

Decimal	Standard ASCII Codes			Character set			
	Hexadecimal		ary				
	F 2	1111	0010	\geq	\geq	\geq	\geq
243	F3	1111	0011	\leq	\leq	\leq	\leq
244	F4	1111	0100	Γ	1	1	1
245	F 5	1111	0101	J	J	J	J
246	F6	1111	0110	\div	\div	\div	\div
247	F7	1111	0111	\approx	\approx	\approx	\approx
248	F 8	1111	1000	-	0	\bigcirc	0
249	F9	1111	1001	-	-	'	-
250	F A	1111	1010	-	-	-	-
251	F B	1111	1011	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
252	F C	1111	1100	n	n	n	n
253	F D	1111	1101	2	2	2	2
254	F E	1111	1110	!	■	-	-
255	F F	1111	1111				

MEMO

APPENDIX C

FUNCTION CODES

The purpose of this Appendix is to provide a quick reference for the various functions available on this printer. Codes are described in the following format.

PURPOSE CODE (decimal ASCII) (hex ASCII) REMARKS

SEE

Tells what the function code does.
Control code mnemonic ASCII decimal equivalent Hexadecimal equivalent
Briefly describes how the command is used.
Tells where details of the command may be found.

Several commands require you to specify a value or values. In these cases, we have used an " n " or " m " to indicate a variable. You should insert the ASCII code for the proper value here.

COMMANDS TO CONTROL PRINT STYLE

These commands are used to control the font style, the print pitch, and special effects.

- Font style controls

PURPOSE
CODE (decimal ASCII)
(hex ASCII)
REMARKS

Selects the LQ characters.
〈ESC〉 "x" 1
$27120 \quad 1$
1B $78 \quad 01$
This command causes the printer to print letter quality (LQ) characters until LQ mode is cancelled. LQ mode cannot be used with any other special printing functions except underlining, overlining, expanded printing, and big character printing. You can select the LQ characters at the power-on default by turning DIP switch 1-4 on. This command is ignored when the "Panel" mode is selected at the power-on.
Note: The character " 1 " (decimal code 49 , hexadecimal code 31) can be used instead of ASCII 1.

SEE
Chapter 5

PURPOSE	Cancels the LQ characters.
CODE (decimal ASCII) (hex ASCII)	\langle ESC \rangle $" \mathrm{x"}$ 0 27 120 0 1 B 78 00
REMARKS	This command cancels the LQ printing and returns the printer to the draft mode. You can select the draft characters as the power-on default by turning DIP switch 1-4 off. This command is ignored when the "Panel" mode is selected at the power-on. Note: The character " 0 " (decimal code 48 , hexadecimal code 30) can be used instead of ASCII 0.
SEE	Chapter 5
PURPOSE	Selects character set \#1.
CODE (decimal ASCII) (hex ASCII)	$\langle\mathrm{ESC}\rangle$ $" 7 "$ 27 55 1B 37
REMARKS	This command causes the printer to cancel character set \#2 and selects instead character set \#1 when the DIP switch $2-2$ is set on. You can select character set \#1 as the power-on default by turning DIP switch $1-5$ on while the DIP switch 2-2 is set on.
SEE	Chapter 7
PURPOSE	Selects character set \#2.
CODE (decimal ASCII) (hex ASCII)	$\langle\mathrm{ESC}\rangle$ $" 6 "$ 27 54 1 B 36
REMARKS	This command selects character set \#2 when the DIP switch $2-2$ is set on. You can select character set \#2 as the poweron default by turning DIP switch $1-5$ off while the DIP switch 2-2 is set on.
SEE	Chapter 7

PURPOSE	Selects optional character set.
CODE	〈ESC〉 "4"
(decimal ASCII)	27

PURPOSE	Sets the print pitch to elite.
CODE (decimal ASCII) (hex ASCII)	$\langle\mathrm{ESC}\rangle$ "M" 27 77 1B 4 D
REMARKS	This command causes printing to be done in elite pitch with 163 characters per line. This command is ignored when the "Panel" mode is selected at the power-on.
SEE	Chapter 5
PURPOSE	Sets the printer to condensed print.
CODE (decimal ASCII) (hex ASCII)	$\begin{gathered} \langle\mathrm{SI}\rangle \\ 15 \\ 0 \mathrm{~F} \end{gathered}$
REMARKS	This command causes printing to be done in condensed pitch with 222 characters per line for pica condensed, and 234 characters per line for elite condensed (LQ characters are not printed in condensed pitch). You can select the pica condensed pitch with the control panel, but you cannot select the elite condensed pitch manually. This command is ignored when the "Panel" mode is selected at the power-on.
SEE	Chapter 5
PURPOSE	Sets the printer to condensed print.
CODE	〈ESC〉 <Sİ
(decimal ASCII)	$27 \quad 15$
(hex ASCII)	1B 0F
REMARKS	Same as $\langle\mathrm{SI}\rangle$, above.
SEE	Chapter 5

PURPOSE	Cancels the condensed print.
CODE (decimal ASCII) (hex ASCII)	$\begin{gathered} \langle\mathrm{DC} 2\rangle \\ 18 \\ 12 \end{gathered}$
REMARKS	This command cancels the condensed printing and returns the printer to the normal print pitch. This command is ignored when the "Panel" mode is selected at the power-on.
SEE	Chapter 5
PURPOSE	Sets the printer to expanded print.
CODE (decimal ASCII) (hex ASCII)	$\langle\mathrm{ESC}\rangle$ "W" 1 27 87 1 1B 57 01
REMARKS	This command causes characters to be printed twice as wide as normally (half the current pitch) until expanded printing is cancelled. Note: The character " 1 " (decimal code 49 , hexadecimal code 31) can be used instead of ASCII 1.
SEE	Chapter 5
PURPOSE	Cancels the expanded print.
CODE (decimal ASCII) (hex ASCII)	\langle ESC〉 "W" 0 27 87 0 $1 B$ 57 00
REMARKS	This command resets the character pitch to what it was before expanded printing was set. Note: The character " 0 " (decimal code 48 , hexadecimal code 30) can be used instead of ASCII 0.
SEE	Chapter 5

PURPOSE	Sets the printer to expanded print for the remainder of the current line．
CODE	＜SO〉
（decimal ASCII）	14
（hex ASCII）	0E
REMARKS	This command causes characters to be printed twice as wide as normally until a carriage return is sent．It also cancelled with $\langle\mathrm{DC} 4\rangle$ ．
SEE	Chapter 5
PURPOSE	Sets the printer to expanded print for the remainder of the current line．
CODE	〈ESC〉＜SO ${ }^{\text {¢ }}$
（decimal ASCII）	$27 \quad 14$
（hex ASCII）	1B 0E
REMARKS	Same as $\langle\mathrm{SO}\rangle$ ，above．
SEE	Chapter 5
PURPOSE	Cancels one line expanded print．
CODE	〈DC4〉
（decimal ASCII）	20
（hex ASCII）	14
REMARKS	This command cancels one line expand－ ed print set with $\langle\mathrm{SO}\rangle$ or $\langle\mathrm{ESC}\rangle\langle\mathrm{SO}\rangle$ ．
SEE	Chapter 5

PURPOSE	Sets the printer to proportional print．
CODE	〈ESC〉＂p＂ 1
（decimal ASCII）	$27 \quad 112$
（hex ASCII）	1B $70 \quad 01$
REMARKS	This command causes characters to be printed with proportional spacing until proportional printing is cancelled．This command is ignored when the＂Panel＂ mode is selected at the power－on． Note：The character＂1＂（decimal code 49，hexadecimal code 31）can be used in－ stead of ASCII 1.
SEE	Chapter 5
PURPOSE	Cancels proportional print．
CODE	〈ESC〉＂p＂
（decimal ASCII）	271120
（hex ASCII）	1B 70
REMARKS	This command cancels the proportional printing and returns to the＂fixed pitch＂ printing．This command is ignored when the＂Panel＂mode is selected at the power－on． Note：The character＂ 0 ＂（decimal code 48 ，hexadecimal code 30 ）can be used in－ stead of ASCII 0.
SEE	Chapter 5

PURPOSE
CODE
（decimal AS
（hex ASCII）

REMARKS

SEE

PURPOSE
CODE （decimal ASCII）
（hex ASCII）
REMARKS
SEE
PURPOSE
CODE
（decimal ASCII）
（hex ASCII）
REMARKS

PURPOSE
CODE
（decimal ASCII）
（hex ASCII）
REMARKS

Cancels boldface printing．

〈ESC〉＂F＂
27
70
1B 46
This command cancels boldface printing and returns the printer to normal print－ ing．

Chapter 5

Cancels boldface printing．

〈ESC〉＂H＂
$27 \quad 72$
1B 48
Same as $\langle E S C\rangle$＂F＂，above．
Chapter 5
Selects underlining．

\langle ESC \rangle	$"-"$	1
27	45	1
$1 B$	$2 D$	01

This command underlines the following characters until underlining is cancelled． Note：The character＂ 1 ＂（decimal code 49 ，hexadecimal code 31）can be used in－ stead of ASCII 1.

Chapter 5
Cancels underlining．

\langle ESC \rangle	$"-"$	0
27	45	0
$1 B$	$2 D$	00

This command stops underlining．
Note：The character＂ 0 ＂（decimal code 48，hexadecimal code 30）can be used in－ stead of ASCII 0.

SEE
Chapter 5

PURPOSE	Selects overlining．
CODE	〈ESC〉＂＿．＂ 1
（decimal ASCII）	27 95 1
（hex ASCII）	$1 \mathrm{~B} \quad 5 \mathrm{~F}$
REMARKS	This command overlines the following characters until overlining is cancelled． Note：The character＂ 1 ＂（decimal code 49，hexadecimal code 31）can be used in－ stead of ASCII 1.
SEE	Chapter 5
PURPOSE	Cancels overlining．
CODE （decimal ASCII） （hex ASCII）	$\begin{array}{ccc}\langle\mathrm{ESC}\rangle & "-" & 0 \\ 27 & 95 & 0 \\ 1 \mathrm{~B} & 5 \mathrm{~F} & 00\end{array}$
REMARKS	This command stops overlining． Note：The character＂ 0 ＂（decimal code 48 ，hexadecimal code 30 ）can be used in－ stead of ASCII 0.
SEE	Chapter 5
PURPOSE	Selects superscripts．
CODE	〈ESC〉＂S＂0
（decimal ASCII）	27 83 0
（hex ASCII）	$1 \mathrm{~B} \quad 53 \quad 00$
REMARKS	This command raises the following characters and prints them as super－ scripts until superscripting is cancelled． Superscripts are not printed as elite pitch or condensed pitch．They are always printed with pica or expanded pica pitch． Note：The character＂ 0 ＂（decimal code 48，hexadecimal code 30）can be used in－ stead of ASCII 0.
SEE	Chapter 5

PURPOSE	Selects subscripts.	
CODE	〈ESC〉 "S"	1
(decimal ASCII)	27	83

CONTROLLING THE VERTICAL PRINT POSITION

These commands are used to move the paper relative to the print head. By moving the paper up or down, the print head, in effect, moves the opposite direction (down or up) on the page.

Line feed controls PURPOSE	
	Advances the paper one line (line feed).
CODE	<LF>
(decimal ASCII)	10
(hex ASCII)	0A
REMARKS	The actual distance advanced by the line feed is set either through DIP switch 2-8 or through various codes which can be sent (see below). When the DIP switch $2-6$ is off, a line feed is automatically generated whenever the printer receives a carriage return.
SEE	Chapter 6
PURPOSE	Sets line spacing to $1 / 8$ inch.
CODE	〈ESC〉 "0"
(decimal ASCII)	$27 \quad 48$
(hex ASCII)	$1 \mathrm{~B} \quad 30$
REMARKS	This command sets the actual distance the paper advances during all subsequent line feeds to $1 / 8$ inch. You can select $1 / 8$ inch line spacing as the poweron default by turning DIP switch 2-8 off.
SEE	Chapter 6

PURPOSE
CODE （decimal ASCII） （hex ASCII）

REMARKS

SEE
PURPOSE
CODE
（decimal ASCII）
（hex ASCII）
REMARKS

SEE
PURPOSE

CODE
（decimal ASCII）
（hex ASCII）
REMARKS

Sets line spacing to $\mathbf{7 / 6 0} \mathbf{i n c h}$ ．

〈ESC〉	$" 1 "$
27	49
$1 B$	31

This command sets the actual distance the paper advances during all subse－ quent line feeds to $7 / 60$ inch．
Chapter 6
Sets line spacing to $n / 180$ inch．

$\langle\mathrm{ESC}\rangle$	$" 3 "$	n
27	51	n
1 B	33	n

This command sets the actual distance the paper advances during all subse－ quent line feeds to $n / 180$ inch．The value of n must be between 1 and 255 ．
Chapter 6
Sets or defines line spacing to $n / 60$ inch．

$\langle\mathrm{ESC}\rangle$	＂A＂	n
27	65	n
1 B	41	n

This command works in two different functions depending on the setting of DIP switch 2－2．When the DIP switch 2－2 is set on，this command defines the ac－ tual distance the paper advances during all subsequent line feeds to $n / 60$ inch． This command must be used in conjunc－ tion with $\langle E S C\rangle$＂ 2 ＂which activates the〈ESC〉＂A＂definition．
When the DIP switch 2－2 is set off，this command sets the actual distance the paper advances during all subsequent line feeds to $n / 60$ inch immediately．The value of n must be between 1 and 255 ．
SEE

PURPOSE	Sets line spacing to $1 / 6$ inch，or Uses $\langle E S C$＂＂A＂definition．
CODE	〈ESC〉＂2＂
（decimal ASCII）	2750
（hex ASCII）	1B 32
REMARKS	This command works in two different functions depending on the setting of DIP switch 2－2．When the DIP switch 2－2 is set on，this command activates the line spacing defined in the $\langle E S C\rangle$＂A＂com－ mand．If the $\langle E S C\rangle$＂A＂command has not been defined，the line spacing is changed to $1 / 6$ inch．When the DIP switch 2－2 is set off，this command sets the actual distance the paper advances during all subsequent line feeds to $1 / 6$ inch．You can select the $1 / 6$ inch line spacing as the power－on default by turn－ ing DIP switch $2-8$ off．
SEE	Chapter 6
PURPOSE	Sends a one－time paper feed of $n / 180$ inch．
CODE	〈ESC〉＂J＂n
（decimal ASCII）	27 74 n
（hex ASCII）	1B 4A n
REMARKS	This command causes the printer to ad vance the paper $n / 180$ inch．It does not change the current value of line spacing and it does not cause a carriage return． The value of n must be between 1 and 255.

SEE
Chapter 6

PURPOSE	Sends a one－time reverse feed of $n / 180$ inch．
CODE	〈ESC〉＂j＂n
（decimal ASCII）	27106
（hex ASCII）	1 B 6A
REMARKS	This command causes the printer to reverse the paper $n / 180 \mathrm{inch}$ ．It does not change the current value of line spacing and it does not cause a carriage return． The value of n must be between 1 and 255.
SEE	Chapter 6
PURPOSE	Sets print position to \boldsymbol{n} lines．
CODE	〈ESC〉＂f＂ 1 n
（decimal ASCII）	27102
（hex ASCII）	1B $6601 n$
REMARKS	This command sets the next print posi－ tion to the nth line from the top of the current page． Note：The character＂ 1 ＂（decimal code 49，hexadecimal code 31）can be used in－ stead of ASCII 1.
SEE	Chapter 6

- Form feed and related commands

PURPOSE \quad| Advances the paper to the top of |
| :--- |
| the next page (form feed). |

CODE	$\langle\mathrm{FF}\rangle$
(decimal ASCII)	12
(hex ASCII)	0 C

REMARKS The actual length of a page ejected by a form feed is set either by setting of the control panel key or through various codes which can be sent (see below). This command works as the ejecting paper command when the optional automatic sheet feeder is mounted on the printer.
SEE Chapter 6
PURPOSE Sets page length to \boldsymbol{n} inches.
CODE
(decimal ASCII)
(hex ASCII)
REMARKS

SEE
Chapter 6

PURPOSE	Sets page length to \boldsymbol{n} lines．
CODE	〈ESC〉＂C＂n
（decimal ASCII）	$27 \quad 67$ n
（hex ASCII）	1B 43 n
REMARKS	This command sets the length of all subsequent pages to n lines．The value of n must be between 1 and 255．This com－ mand is ignored when the optional automatic sheet feeder is mounted on the printer．
SEE	Chapter 6
－Bottom margin and vertical tabs	
PURPOSE	Sets the bottom margin．
CODE	〈ESC〉＂N＂n
（decimal ASCII）	$27 \quad 78$
（hex ASCII）	$1 \mathrm{~B} \quad 4 \mathrm{E} \quad n$
REMARKS	This command sets the bottom margin to n lines．The printer will generate a form feed whenever there are n lines left on the page．This command is ignored when the optional automatic sheet feeder is mounted on the printer．The value of n must be between 1 and 127 ．
SEE	Chapter 6
PURPOSE	Cancels the bottom margin．
CODE	〈ESC〉＂O＂
（decimal ASCII）	$27 \quad 79$
（hex ASCII）	1B 4F
REMARKS	This command cancels the bottom margin set by $\langle\mathrm{ESC}\rangle$＂ N ＂command．
SEE	Chapter 6

PURPOSE	Advances paper to the next ver－ tical tab position．
CODE	＜VT＞
（decimal ASCII） （hex ASCII）	$\begin{aligned} & 11 \\ & 0 B \end{aligned}$
REMARKS	This command causes the paper to be ad－ vanced to the next vertical tab position， or the top of the next page，whichever it finds first．If the vertical tab positions are not set，this command works as a line feed command．
SEE	Chapter 6
PURPOSE	Sets vertical tab positions．
CODE	〈ESC〉＂B＂n1 n2 n3 ．．．
（decimal ASCII）	27.66 n1 n2 n3 ．．． 0
（hex ASCII）	$1 \mathrm{~B} 42 \quad n 1 n 2 n 3 \ldots 00$
REMARKS	This command cancels all current ver－ tical tab positions and sets those defined at lines $n 1, n 2, n 3$ ，etc．The maximum number of vertical tab positions allowed is 16 ．The ASCII 0 character is used as a command terminator．Each vertical tab position must be specified in ascending order．
SEE	Chapter 6
PURPOSE	Selects vertical channel．
CODE	〈ESC〉＂p＂no
（decimal ASCII）	$27 \quad 47$ no
（hex ASCII）	1B 2F n0
REMARKS	This command selects one of the multi－ ple vertical channels determined by the value of $n 0$ ．The value of $n 0$ must be be－ tween 0 and 7 ．
SEE	Chapter 6

PURPOSE	Sets vertical tab positions in a channel．
CODE	〈ESC〉＂b＂n0 n1 n2 n3 ．．．
（decimal ASCII）	27 98 n0 n1 n2 n3 ．．．
（hex ASCII）	$1 \mathrm{~B} \quad 62$ n0 n1 n2 n3 ．．． 00
REMARKS	This command cancels all current ver－ tical tab positions in channel $n 0$ and sets those defined at lines $n 1, n 2, n 3$ ，etc．The maximum number of vertical tab posi－ tions for each channel allowed is 16 ．The ASCII 0 character is used as a command terminator．Each vertical tab position must be specified in ascending order． The vertical channel，n0，must be be－ tween 0 and 7.
SEE	Chapter 6
PURPOSE	Sets vertical tab positions every n lines．
CODE	〈ESC〉＂e＂ 1 n
（decimal ASCII）	27101 1 n
（hex ASCII）	1B 6501
REMARKS	This command cancels all current ver－ tical tab positions and sets those every n lines． Note：The character＂1＂（decimal code 49 ，hexadecimal code 31）can be used in－ stead of ASCII 1.
SEE	Chapter 6

CONTROLLING THE HORIZONTAL PRINT POSITION

This section described commands that move the print head and restrict its printing range (such as setting margins and tabs).

PURPOSE \quad| Returns print head to the left |
| :--- |
| margin (carriage return). |

CODE (decimal ASCII) (hex ASCII)
REMARKS

SEE
PURPOSE
CODE
(decimal ASCII)
(hex ASCII)
REMARKS

〈CR 〉
13
0D
This command returns the print head to the left margin. If DIP switch $2-6$ has been set off, then this command will also cause a line feed character to be generated after the carriage return, thereby advancing to the beginning of the next print line automatically.
Chapter 6

Sets the left margin.

$\langle\mathrm{ESC}\rangle$	"1"	n
27	108	n
1 B	6 C	n

This command sets the left margin to n characters. Each line will begin in the (n +1 th character position from the left edge. The value of n must be between 0 and 255 . You can set the left margin manually with the control panel.
Note: Changing the print pitch after the left margin has been set does not change the margin - it stays in exactly the same place on the page.
SEE
Chapter 6

PURPOSE	Sets the right margin. CODE (decimal ASCII) (hex ASCII)
〈ESC〉 "Q"	

PURPOSE	Sets horizontal tab positions.
CODE (decimal ASCII) (hex ASCII)	$\langle\mathrm{ESC}\rangle$ "D" $n 1 n 2 n 3 \ldots$ 0 27 68 $n 1 n 2 n 3 \ldots$ 0 1B 44 $n 1 n 2 n 3 \ldots$ 00
REMARKS	This command cancels all current horizontal tab positions and sets those defined at print positions $n 1, n 2, n 3$, etc. The maximum number of horizontal tab positions allowed is 32 . The ASCII 0 character is used as a command terminator. Each horizontal tab position must be specified in ascending order.
SEE	Chapter 6
PURPOSE	Sets horizontal tab positions every \boldsymbol{n} characters.
CODE (decimal ASCII) (hex ASCII)	$\begin{array}{cccc}\langle\mathrm{ESC}\rangle & \text { "e" } & 0 & n \\ 27 & 101 & 0 & n \\ 1 \mathrm{~B} & 65 & 00 & n\end{array}$
REMARKS	This command cancels all current horizontal tab positions and sets those every n characters. Note: The character " 0 " (decimal code 48, hexadecimal code 30) can be used instead of ASCII 0.
SEE	Chapter 6
PURPOSE	Moves the print head to an absolute horizontal position.
CODE (decimal ASCII) (hex ASCII)	$\begin{array}{cccc}\langle\mathrm{ESC}\rangle & " \$ " & n 1 & n 2 \\ 27 & 36 & n 1 & n 2 \\ 1 \mathrm{~B} & 24 & n 1 & n 2\end{array}$
REMARKS	This command causes the printer to move the print head to an absolute horizontal position. The position, in inches, is determined by the formula ($n 1+$ $n 2 \times 256) / 60$. The maximum position is 13.6 inches.
SEE	Chapter 6

PURPOSE	Moves the print head to a specified horizontal position．
CODE	〈ESC〉＂${ }^{\text {＂}} n 1$ n2
（decimal ASCII）	$27 \quad 92 \quad n 1 \quad n 2$
（hex ASCII）	1B 5C n1 n2
REMARKS	This command causes the printer to move the print head to a specified horizontal position．It can move the print head either left or right．The distance，in inches，is determined by the following formulas： Draft：$(n 1+n 2 \times 256) / 120$ Letter Quality：$(n 1+n 2 \times 256) / 180$ Proportional：$(n 1+n 2 \times 256) / 360$ To move to the left，add 64 to the calculated value of $n 2$ ．The maximum distance is 13.6 inches．The command will be ignored if you try to move to a position outside of the current margins．
SEE	Chapter 6
PURPOSE	Adds n dot spaces between characters．
CODE	〈ESC〉＂space＂n
（decimal ASCII）	27 32 n
（hex ASCII）	1B $20 \quad n$
REMARKS	This command increases the space be－ tween characters by n dots when the DIP switch 2－2 is set off．
SEE	Chapter 7

PURPOSE

CODE
(decimal ASCII) (hex ASCII)
REMARKS

Sets the print position to n characters.

$\langle\mathrm{ESC}\rangle$	"f"	0	n
27	102	0	n
1 B	66	00	n

This command sets the next print position to n columns from the left margin. The value of n must be between 0 and 127.

Note: The character " 0 " (decimal code 48 , hexadecimal code 30) can be used instead of ASCII 0.

SEE

DOWNLOAD CHARACTER COMMANDS

PURPOSE	Defines download characters into RAM.
CODE	
(decimal ASCII)	$\begin{array}{rr} 27 & 38 \quad \begin{array}{r} 0 \\ \end{array} \begin{array}{r} 11 n 2 m 0 m 1 \\ m 2 d 1 d 2 \ldots d x \end{array} \end{array}$
(hex ASCII)	$\text { 1B } \quad 26 \quad \begin{gathered} 00 n 1 n 2 m 0 m 1 \\ m 2 d 1 d 2 \ldots d x \end{gathered}$
REMARKS	This command is used to set up one or more user-defined characters and store them into RAM for later use. RAM is cleared when the power is turned off. The values of $n 1$ and $n 2$ specify the range of positions in RAM that the characters are to occupy. Valid character positions are between 33 and 126. Following $n 2$ this printer expects character data bytes for each character to be defined. The first byte, $m 0$, specifies the left hand space of the download character. The second byte, $m 1$, specifies the character width. And the third byte, $m 2$, specifies the right hand space of the character. The sum of $m 0, m 1$ and $m 2$ should be less than 12 for the draft characters and 18 for the LQ characters. $d 1$ through $d x$ determine which dots form the character.

Note: This command is ignored when the DIP switch 2-3 is set on.

SEE
Chapter 8

PURPOSE	Copies standard character ROM font into RAM.		
CODE	〈ESC〉 ":"	0	0

DOT GRAPHICS COMMANDS

PURPOSE
CODE
(decimal ASCII)
(hex ASCII)
REMARKS

Prints normal-density graphics.〈ESC〉 "K" n1 n2 m1 m2.....
$27 \quad 75$ n1 $n 2 m 1 m 2 \ldots$.
1B 4B n1 $n 2 m 1 m 2 \ldots$.
This command selects 60 dots-per-inch, column-scan, bit-image graphics mode. The values of $n 1$ and $n 2$ represent the number of graphics characters to be printed, where the total number of characters $=n 2$ times $256+n 1$. The correct number of graphics data bytes ($m 1, m 2$, etc.) must follow $n 2$. The ASCII value of these characters determine which pins are fired for each character.

SEE

PURPOSE
CODE
(decimal ASCII)
(hex ASCII)
REMARKS

Chapter 9

Prints double-density graphics.

$\langle\mathrm{ESC}\rangle$	"L"	$n 1 n 2 m 1 m 2 \ldots .$.
27	76	$n 1 n 2 m 1 m 2 \ldots .$.
1B	4 C	$n 1 n 2 m 1 m 2 \ldots .$.

This command selects 120 dots-per-inch, column-scan, bit-image graphics mode. The values of $n 1$ and $n 2$ are the same as in normal-density graphics. The correct number of graphics data bytes ($m 1, m 2$, etc.) must follow $n 2$. The ASCII value of these characters determine which pins are fired for each character.

Chapter 9

PURPOSE	Prints double-density graphics.
CODE	〈ESC〉 "Y" n1 n2 m1 m2.
(decimal ASCII)	$27 \quad 89$ n1 n2 m1 m2..
(hex ASCII)	$1 \mathrm{~B} \quad 59 \quad n 1 n 2 m 1 m 2$
REMARKS	Same as $\langle\mathrm{ESC}\rangle$ "L", above.
SEE	Chapter 9
PURPOSE	Prints quadrupledensity graphics.
CODE (decimal ASCII) (hex ASCII)	$\langle\mathrm{ESC}\rangle$ "Z" $n 1 n 2 m 1 m 2 \ldots .$. 27 90 $n 1 n 2 m 1 m 2 \ldots .$. 1B 5 A $n 1 n 2 m 1 m 2 \ldots$.
REMARKS	This command selects 240 dots-per-inch, column-scan, bit-image graphics mode. The values of $n 1$ and $n 2$ are the same as in normal-density graphics. The correct number of graphics data bytes ($m 1, m 2$, etc.) must follow $n 2$. The ASCII value of these characters determine which pins are fired for each character.
SEE	Chapter 9

PURPOSE Selects graphics modes.

CODE (decimal ASCII) (hex ASCII)

REMARKS

$$
\begin{array}{cll}
\langle\mathrm{ESC}\rangle & \text { "*" } & n 0 n 1 n 2 m 1 m 2 \ldots . . \\
27 & 42 & n 0 n 1 n 2 m 1 m 2 \ldots . \\
1 \mathrm{~B} & 2 \mathrm{~A} & n 0 n 1 n 2 m 1 m 2 \ldots . .
\end{array}
$$

This command selects one ten possible graphics modes, depending on the value of $n 0$. The values of $n 1$ and $n 2$ are the same as normal-density graphics mode. The correct number of graphics data bytes ($m 1, m 2$, etc.) must follow $n 2$. The ASCII value of these characters determine which pins are fired for each character. The value of $n 0$ and its related graphics modes are shown below.

n	Graphics mode
0	Normal-density (60 dots per inch)
1	Double-density (120 dots per inch)
2	Double-density (120 dots per inch)
3	Quadruple-density (240 dots per inch)
4	Semi-double density (80 dots per inch)
6	CRT graphics (90 dots per inch) 24-pin normal-density (60 dots per inch) 32
33	24-pin double-density (120 dots per inch) 24-pin CRT graphics (90 dots per inch)
39	24-pin triple-density (180 dots per inch)

PURPOSE Redefines the graphics mode.

CODE
(decimal AS
(hex ASCII)
REMARKS

OTHER COMMANDS

PURPOSE	Sets the value of the eighth data bit to logical 1.
CODE	\langle ESC $\rangle>"$
(decimal ASCII)	27

PURPOSE	Sets the value of the eighth data bit to logical 0 ．
CODE	〈ESC〉＂＝＂
（decimal ASCII）	$27 \quad 61$
（hex ASCII）	1 B 3D
REMARKS	This command forces the eighth data bit of each subsequent character sent to the printer to logical 0 ．This code should not be used to transmit printer control code．
SEE	Chapter 7
PURPOSE	Accepts the value of the eighth data bit as is．
CODE	〈ESC〉＂\＃＂
（decimal ASCII）	$27 \quad 35$
（hex ASCII）	$1 \mathrm{~B} \quad 23$
REMARKS	This command cancels either setting of the eighth data bit．The printer will use the value of the eighth data bit that is sent from the computer．This code allows users with a 7－bit interface to resume normal functions after accessing those characters whose ASCII code is greater than 127.
SEE	Chapter 7
PURPOSE	Moves the print head back one print position（backspace）．
CODE （decimal ASCII） （hex ASCII）	$\begin{gathered} \langle\mathrm{BS}\rangle \\ 8 \\ 08 \end{gathered}$
REMARKS	This command shifts the print head one column to the left．If the print head is at the left margin，the command is ignored． This command can be used to overstrike characters．
SEE	Chapter 7

PURPOSE	Deletes the last character sent．
CODE	〈DEL〉
（decimal ASCII）	127
（hex ASCII）	7 F
REMARKS	This command deletes the last character received．This command is ignored if the last character received has already been printed，or if the last character received was all or part of a function code．
SEE	Chapter 7
PURPOSE	Cancels line．
CODE	〈CAN〉
（decimal ASCII）	24
（hex ASCII）	18
REMARKS	This command deletes the last line in the print buffer at the time the command is used．
SEE	Chaper 7
PURPOSE	Sets printer off line．
CODE	＜DC3＞
（decimal ASCII）	19
（hex ASCII）	13
REMARKS	This command causes the printer to set itself off line，disregarding all subse－ quent characters and function codes， with the exception of $\langle\mathrm{DC} 1\rangle$ ，which will return the printer to an on line state． This is not the same as pushing the On Line key．When the On Line lamp is out the printer will not respond to $\langle\mathrm{DC1}\rangle$ ．
SEE	Chapter 7

PURPOSE	Sets printer on line.
CODE (decimal ASCII) (hex ASCII)	$\begin{gathered} \langle\mathrm{DC} 1\rangle \\ 17 \\ 11 \end{gathered}$
REMARKS	This command resets the printer to an on line state, thus allowing it to receive and process all subsequent characters and function codes. This is not the same as pushing the On Line key. When the On Line lamp is out the printer will not respond to $\langle\mathrm{DC} 1\rangle$.
SEE	Chapter 7
PURPOSE	Sounds the printer bell.
CODE (decimal ASCII) (hex ASCII)	〈BEL〉 7 07
REMARKS	This command causes the buzzer to sound for about a quarter of a second.
SEE	Chapter 7
PURPOSE	Disables paper-out detector.
CODE (decimal ASCII) (hex ASCII)	$\langle\mathrm{ESC}\rangle$ $" 8 "$ 27 56 1 B 38
REMARKS	This command causes the printer to disregard the signal sent by the paperout detector. The paper-out signal normally sounds the printer bell and stops printing until paper is inserted and the printer is reset. DIP switch 2-4 can also set to disable the paper-out detector.
SEE	Chapter 7

PURPOSE	Enables paper-out detector.
CODE	〈ESC〉 "9"
(decimal ASCII)	$27 \quad 57$
(hex ASCII)	$1 \mathrm{~B} \quad 39$
REMARKS	This command restores the function of the paper-out detector.
SEE	Chapter 7
PURPOSE	Selects uni-directional printing.
CODE (decimal ASCII) (hex ASCII)	\langle ESC \rangle "U" 1 27 85 1 $1 B$ 55 01
REMARKS	This command causes all subsequent printing to be done in uni-directional printing. Uni-directional printing is useful in printing tables or charts, since it ensures that vertical columns of characters will be in alignment. Note: The character " 1 " (decimal code 49, hexadecimal code 31) can be used instead of ASCII 1.
SEE	Chapter 7
PURPOSE	Cancels uni-directional printing.
CODE (decimal ASCII) (hex ASCII)	\langle ESC \rangle "U" 0 27 85 0 $1 B$ 55 00
REMARKS	This command cancels uni-directional printing and returns to the standard bidirectional printing, which is considerably faster. Note: The character " 0 " (decimal code 48, hexadecimal code 30) can be used in stead of ASCII 0.
SEE	Chapter 7

PURPOSE	Selects one－line uni－directional printing．
CODE	〈ESC〉＂〈＂
（decimal ASCII）	2760
（hex ASCII）	1B 3C
REMARKS	This command immediately returns the print head to the left margin．The re－ mainder of the line is printed from left to right．Normal（bi－directional）printing resumes following a carriage return．
SEE	Chapter 7
PURPOSE	Selects double－height expanded printing．
CODE	〈ESC〉＂h＂
（decimal ASCII）	27104
（hex ASCII）	$1 \mathrm{~B} \quad 68 \quad 01$
REMARKS	This command causes the printer to print expanded characters with double－ height．
SEE	Chapter 7
PURPOSE	Selects quadruple－height expand－ ed printing．
CODE	〈ESC〉＂h＂ 2
（decimal ASCII）	$27 \quad 104 \quad 2$
（hex ASCII）	1B 68 02
REMARKS	This command causes the printer to print expanded characters with quadru－ ple－height．
SEE	Chapter 7

PURPOSE	Cancels double－and quadruple－ height expanded printing．
CODE	〈ESC〉＂h＂ 0
（decimal ASCII）	271040
（hex ASCII）	$\begin{array}{lll}1 B & 68 & 00\end{array}$
REMARKS	This command cancels double－height and quadruple－height expanded printing， and returns to the previous character size．
SEE	Chapter 7
PURPOSE	Prints characters in the undefined control code area．
CODE	〈ESC〉＂I＂ 1
（decimal ASCII）	$27 \quad 73$ 1
（hex ASCII）	1B 4900
REMARKS	This command causes the printer to print characters in the undefined control code area．This command is ignored when the DIP switch 2－2 is set on． Note：The character＂ 1 ＂（decimal code 49，hexadecimal code 31）can be used in－ stead of ASCII 1.
SEE	Chapter 8
PURPOSE	Selects undefined codes as control codes．
CODE	〈ESC〉＂I＂0
（decimal ASCII）	$27 \quad 730$
（hex ASCII）	$1 \mathrm{~B} \quad 49 \quad 00$
REMARKS	This command cancels to print the characters in the undefined control codes and restores them as the control codes． Note：The character＂ 0 ＂（decimal code 48 ，hexadecimal code 30 ）can be used in－ stead of ASCII 0.
SEE	Chapter 8

PURPOSE	Sets immediate		
print mode.			
CODE	mSC \rangle	"i"	1
(decimal ASCII)	27	105	1
(hex ASCII)	1 B	69	01

REMARKS This command selects the immediate print mode. In the immediate print mode the print head prints one character at a time, as you send it. The printer also moves the paper up so that you can see the current line and then down to continue printing. This kind of instant feedback can be especially helpful in telecommunications.
Note: The character " 1 " (decimal code 49 , hexadecimal code 31) can be used instead of ASCII 1.

SEE

PURPOSE
CODE
(decimal ASCII)
(hex ASCII)
REMARKS

SEE
PURPOSE
CODE
(decimal ASCII)
(hex ASCII)
REMARKS

SEE

Chapter 7

Cancels immediate print mode.

$\langle\mathrm{ESC}\rangle$	$" i "$	0
27	105	0
1 B	69	00

This command cancels the immediate print mode and returns the normal print mode.
Note: The character " 0 " (decimal code 48, hexadecimal code 30) can be used instead of ASCII 0.
Chapter 7
Repeats the characters.

| $\langle\mathrm{ESC}\rangle$ | "V" | $n m 1 \ldots m x$ | 〈ESC \rangle | "V" | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | 86 | $n m 1 \ldots m x$ | 27 | 86 | 0 |
| 1B | 56 | $n m 1 \ldots m x$ | 1B | 56 | 00 |

This command repeats n times (n is an integer number from 0 to 255) data bytes represented by $m 1 \ldots m x$.
Chapter 7

PURPOSE	Resets the printer．
CODE	〈ESC〉＂＠＂
（decimal ASCII）	2764
（hex ASCII）	$1 \mathrm{~B} \quad 40$
REMARKS	This command reinitializes the printer． The print buffer is cleared，and the character pitch，character set，line feed pitch，bottom margin，and international character set are all reset to the values defined by their respective DIP switches．The main difference between the 〈ESC〉＂＠＂command and turning the printer off and back on again is that download characters are preserved with this command．
SEE	Chapter 7

PURPOSE	Sets 9－pin graphics emulation mode．
CODE	〈ESC〉＂g＂
（decimal ASCII）	27103
（hex ASCII）	$1 \mathrm{~B} \quad 67$
REMARKS	This command sets the printer to suit for
	9 －pin printers．
	After you＇ve entered into the 9－pin
	graphics mode，following commands
	work in the same manner for the 9 －pin printers，as shown below：
	〈ESC〉＂A＂n－Sets or defines line spac－ ing to $n / 72$ inch．
	〈ESC〉＂ 3 ＂n－Sets line spacing to $n / 216$ inch．
	〈ESC〉＂J＂n－Sends a one－time paper feed of $n / 216$ inch．
	〈ESC〉＂j＂n－Sends a one－time reverse feed of $n / 216$ inch．
	In addition，the relationship between the dot graphics data and the pins in the print head will be changed to suit for 9 － pin printers．
	Note：You must turn off the power switch to cancel this mode．
SEE	Chapter 7

PURPOSE	Selects auto feed mode．				
CODE	〈ESC〉	〈EM \rangle	4		
（decimal ASCII）	27	25	4		
（hex ASCII）	1B	19	04		
REMARKS	This command causes the printer to select the auto sheet feeding mode．This command is ignored when the optional automatic sheet feeder is not mounted on the printer．				
SEE	Chapter 7				
PURPOSE	Selects auto feed mode．				
CODE	＂${ }^{\prime}$	＂${ }^{\prime \prime}$	＂4＂	＂）＂	＂）＂
（decimal ASCII）	40	40	52	41	41
（hex ASCII）	28	28	34	29	29
REMARKS	Same as $\langle\mathrm{ESC}\rangle\langle\mathrm{EM}\rangle$ 4，above．				
SEE	Chapter 7				
PURPOSE	Cancels auto feed mode．				
CODE （decimal ASCII） （hex ASCII）	$\langle\mathrm{ESC}\rangle$ $\langle\mathrm{EM}\rangle$ 0 27 25 0 1 B 19 00				
REMARKS	This command causes the printer to cancel the auto sheet feeding mode．This command is ignored when the optional automatic sheet feeder is not mounted on the printer．				
SEE	Chapter 7				
PURPOSE	Cancels auto feed mode．				
CODE	＂$"$	＂＂	＂0＂	＂）＂	＂）＂
（decimal ASCII）	40	40	48	41	41
（hex ASCII）	28	28	30	29	29
REMARKS	Same as $\langle\mathrm{ESC}\rangle\langle\mathrm{EM}\rangle$ 0，above．				
SEE	Chapter 7				

PURPOSE
CODE
(decimal ASCII)
(hex ASCII)
REMARKS

Ejects paper.

$\langle\mathrm{ESC}\rangle$	$\langle\mathrm{EM}\rangle$	"R"
27	25	82
1 B	19	52

This command causes the printer to eject paper. This command is ignored when the optional automatic sheet feeder is not mounted on the printer.

SEE

PURPOSE
CODE
(decimal ASCII)
(hex ASCII)
REMARKS
SEE

Chapter 7
Ejects paper.

"("	" ${ }^{\prime}$	"R"	")"	")"
40	40	82	41	41
28	28	52	29	29

Same as $\langle\mathrm{ESC}\rangle\langle\mathrm{EM}\rangle$ "R", above.
Chapter 7

APPENDIX D

COMMAND SUMMARY IN NUMERIC ORDER

Control code
CHR\＄（7）
CHR\＄（8）
CHR\＄（9）
CHR\＄（10）
CHR\＄（11）
CHR\＄（12）
CHR\＄（13）
CHR\＄（14）
CHR\＄（15）
CHR\＄（17）
CHR\＄（18）
CHR\＄（19）
CHR\＄（20）
CHR\＄（24）
CHR\＄（27）
CHR\＄（127）
〈ESC〉CHR\＄（14）
$\langle\mathrm{ESC}\rangle \mathrm{CHR}$（15）
〈ESC〉CHR\＄（25）CHR\＄（0）
Cancels auto feed mode
$\langle\mathrm{ESC}\rangle \mathrm{CHR}$（25）CHR\＄（1）
Supplies paper from first bin
〈ESC〉CHR\＄（25）CHR\＄（2）
Supplies paper from second bin

〈ESC〉CHR\＄（25）CHR\＄（4）

〈ESC＞CHR\＄（25）＂R＂	Ejects paper
$\langle\mathrm{ESC}\rangle \mathrm{CHR}$（32）$n$	Adds n dot spaces between characters
$\langle\mathrm{ESC}\rangle$＂！＂$n$	Sets the master print mode
〈ESC〉＂\＃＇	Accepts the value of the eighth data bit as is
$\langle\mathrm{ESC}$ 〉＂\＄＂$n 1$ n2	Moves the print head to an absolute horizontal position
〈ESC〉＂\％＂ 0 CHR\＄（0）	Cancels download character set
〈ESC〉＂\％＂ 1 CHR\＄（0）	Selects download character set
$\langle\mathrm{ESC}\rangle$＂\＆＂CHR\＄（0）$n 1$	$2 m 0 m 1 m 2 d 1 d 2 . . . d x$

Defines download characters into RAM
〈ESC〉＂＊＂n0 n1 n2 m1 m2 ．．．
Selects graphics modes
〈ESC〉＂－＂ $0 \quad$ Cancels underlining
〈ESC〉＂－＂ $1 \quad$ Selects underlining
〈ESC〉＂${ }^{\text {E }}$ n0 Selects vertical channel
〈ESC〉＂0＂Sets line spacing to $1 / 8$ inch
〈ESC〉＂1＂Sets line spacing to 7／60 inch
$\langle E S C\rangle$＂2＂Sets line spacing to $1 / 6$ inch，or uses〈ESC〉＂A＂definition
Sets line spacing to $n / 180$ inch
〈ESC〉＂ 3 ＂n
Selects optional character set
〈ESC〉＂5＂
〈ESC〉＂ 6 ＂
〈ESC〉＂7＂
〈ESC〉＂D＂Disables paper－out detector
〈ESC〉＂9＂Enables paper－out detector
〈ESC〉＂：＂CHR\＄（0）CHR\＄（0）CHR\＄（0）
Copies standard ROM font into RAM
$\langle E S C\rangle$＂〈＂
$\langle\mathrm{ESC}\rangle$＂＝＂
$\langle\mathrm{ESC}\rangle$＂〉＂
〈ESC〉＂？＂n0 $n 1$
〈ESC〉＂＠＂
〈ESC〉＂A＂n
Selects one－line uni－directional print－ ing
Sets the value of the eighth data bit to logical 0
Sets the value of the eighth data bit to logical 1
Redefines the graphics mode
Resets the printer
Sets or defines line spacing to $n / 60$ inch

＜ESC〉＂B＂$n 1 n 2 n 3 \ldots \mathrm{CHR}$（0）	
	Sets vertical tab positions
〈ESC〉＂C＂CHR\＄（0）n	Sets page length to n inches
〈ESC〉＂C＂n	Sets page length to n lines
〈ESC〉＂D＂$n 1 n 2 n 3 \ldots$ CHR\＄（0）	
	Sets horizonal tab positions
〈ESC＞＂E＂	Selects boldface printing
〈ESC〉＂F＂	Cancels boldface printing
〈ESC＞＂G＂	Selects boldface printing
〈ESC〉＂H＂	Cancels boldface printing
〈ESC〉＂I＂ 0	Selects undefined codes as control codes
〈ESC〉＂I＂ 1	Prints characters in the undefined control code area
〈ESC〉＂J＂n	Sends a one－time paper feed of $n / 180$ inch
〈ESC〉＂K＂n1n2m1m	．Prints normal－density graphics
〈ESC〉＂L＂$n 1 n 2 m 1 m 2$	．Prints double－density graphics
〈ESC〉＂M＂	Sets the print pitch to elite
〈ESC）＂N＂n	Sets the bottom margin
（ESC）＂O＂	Cancels the bottom margin
〈ESC〉＂P＂	Sets the print pitch to pica
〈ESC〉＂Q＂n	Sets the right margin
〈ESC〉＂R＂n	Selects an international character set
〈ESC＞＂S＂ 0	Selects superscripts
〈ESC〉＂S＂ 1	Selects subscripts
〈ESC〉＂T＂	Cancels a superscript or subscript
〈ESC〉＂U＂ 0	Cancels uni－directional printing
〈ESC〉＂U＂ 1	Selects uni－directional printing
	Repeats the characters
〈ESC＞＂W＂ 0	Cancels the expanded print
〈ESC〉＂W＂ 1	Sets the printer to expanded print
〈ESC〉＂Y＂$n 1 n 2 m 1 m$	．．Prints double－density graphics
〈ESC〉＂Z＂$n 1 n 2 m 1 m 2 \ldots$ Prints quadruple－density graphics	
$\langle\mathrm{ESC}\rangle$＂\＂$n 1 n 2$	Moves the print head to a specified horizontal position
〈ESC〉＂－．＂ 0	Cancels overlining
〈ESC〉＂＿＂ 1	Selects overlining
〈ESC〉＂b＂n0 n1 n2 n	．．CHR\＄（0）

Sets vertical tab positions in a chan－ nel

〈ESC〉＂e＂ $0 n$	Sets horizontal tab positions every n characters
$\langle\mathrm{ESC}\rangle$＂e＂ 1 n	Sets vertical tab positions every n lines
$\langle\mathrm{ESC}\rangle$＂f＂ $0 n$	Sets the print position to n characters
〈ESC〉＂f＂ $1 n$	Sets print position to n lines
〈ESC〉＂g＂	Sets 9－pin graphics emulation mode
〈ESC＞＂h＂CHR\＄（0）	Cancels double－and quadruple－ height expanded printing
〈ESC＞＂h＂CHR\＄（1）	Selects double－height expanded printing
〈ESC〉＂h＂CHR\＄（2）	Selects quadruple－height expanded printing
〈ESC〉＂i＂ 0	Cancels immediate print mode
〈ESC〉＂i＂ 1	Sets immediate print mode
〈ESC〉＂j＂n	Sends a one－time reverse feed of $n / 180$ inch
〈ESC〉＂k＂n	Selects a character set
〈ESC＞＂l＂n	Sets the left margin
〈ESC＞＂p＂ 0	Cancels proportional print
〈ESC＞＂p＂ 1	Sets the printer to proportional print
〈ESC〉＂x＂ 0	Cancels the LQ characters
〈ESC＞＂x＂ 1	Selects the LQ characters
＂（（0））＂	Cancels auto feed mode
＂（（1））＂	Supplies paper from first bin
＂（（2））＂	Supplies paper from second bin
＂（（4））＂	Selects auto feed mode
＂（ R$)$ ）＂	Ejects paper

APPENDIX E

TECHNICAL SPECIFICATIONS

Printing	
Printing method	Serial impact dot matrix
Printing speed	300 characters per second (in Draft elite)
	250 characters per second (in Draft pica)
	100 characters per second (in LQ elite)
	83 characters per second (in LQ pica)
Print buffer	16 KB (Expandable to 32 K bytes with optional buffer board)
Paper feed	3.3 inches/second (in case of form feeding)
	Tractor and Friction feed
Printing direction	Bi-directional, logic seeking
	Uni-directional in dot graphics modes
Character set	
Draft characters	96 standard ASCII characters
	33 international characters [11 sets]
	81 IBM special characters
LQ characters	96 standard ASCII characters
	33 international characters [11 sets]
	81 IBM special characters
Other characters	52 IBM block graphics characters
	128 super and subscripts
	128 downloadable characters

Character matrix	24×15 dots, LQ pica characters 24×13 dots, LQ elite characters 24×9 dots, Draft characters 12×8 dots, Super and subscripts 30×18 dots, IBM block graphics 8 or 24×810 dots, Normal-density graphics 8×1080 dots, Semi-double density graphics 8 or 24×1215 dots, CRT graphics 8 or 24×1620 dots, Double-density graphics 24×2430 dots, Triple-density graphics 8×3240 dots, Quadruple-density graphics
Line spacing	$1 / 6$ or $1 / 8$ inch standard $n / 60$ or $n / 180$ inch programmable
Column width	136 , normal pica 163, normal elite 222, condensed pica 244, condensed elite 68, expanded pica 81, expanded elite 111, expanded condensed pica 122, expanded condensed elite and proportional spacing
Special features	Automatic single sheet insertion Prestige Letter Quality printing Short form tear-off Easy access format switches Self-test and hex dump Downloadable characters 7 or 8 bit selectable interface Ultra hi-resolution bit image graphics Vertical and horizontal tabs Skip over perforation 15.5" carriage Automatic sheet feeder (option) Various LQ character cartridges (option)

Paper

Single sheets
$5.5-14.5$ inches, wide
$0.07-0.10 \mathrm{~mm}$, thickness
Sprocket-feed paper
4-15.5 inches, wide
$0.07-0.10 \mathrm{~mm}$, one-part form thickness
Max 0.2 mm , 3-part form thickness

Printer	
Dimensions	Height 121 mm (4.7 inches)
	Width 580 mm (22.8 inches)
	Depth 383 mm (15.1 inches)
Weight	14.8 Kg (32.6 pounds)
Power	$120 \mathrm{VAC} \pm 10 \%, 60 \mathrm{~Hz} .275 \mathrm{~W}$
	$220 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz} .275 \mathrm{~W}$
	$240 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz} .275 \mathrm{~W}$
Environment	Temperature: 5 to $35^{\circ} \mathrm{C}$ (40 to $95^{\circ} \mathrm{F}$)
	Humidity: 10 to 80%, non condensing
Ribbon	Black cloth ribbon in special cartridge
	Ribbon life: 4.5×10^{6} draft characters
Print head life	2×10^{8} strokes per wire
Parallel interface	
Interface	Centronic-compatible, 7 or 8 bit
Synchronization	By external supplied Strobe pulses
Handshaking	By ACK or BUSY signals
Logic level	TTL
Connector	57-30360 Amphenol
Serial interface (option)	
Interface	Asynchronous RS-232C/20 mA current loop
Bit rate	150, 300, 600, 1200, 2400, 4800, 9600,
	19200 baud
Word length	1 start bit
	7 or 8 data bits
	Odd, even or no parity
	1 or 2 stop bits
Handshaking	Serial BUSY, 1 byte mode
	Serial BUSY, 1 block mode
	ACK mode
	XON/XOFF mode

MEMO

APPENDIX F

THE

PARALLEL INTERFACE

This printer has a parallel interface to communicate with the computer that it is connected to. The operating specifications of the parallel interface are as follows:

Data transfer rate: $\quad 1,000$ to 6,000 characters per second Synchronization: Via externally supplied STROBE pulses Handshaking: Logic level: $\overline{\mathrm{ACK}}$ and BUSY signals Compatible with TTL level

The parallel interface connects to the computer by a 36 pin connector on the back of the printer. This connector mates with an Amphenol 57-30360 connector. The functions of the various pins are summarized in Table F-1.

- Functions of the Connector Signals

Communications between the computer and the printer use many of the pins of the connector. To understand how the system of communications works we need to look at the functions of the various signals carried by the pins of the interface connector.

Pin 1 carries the $\overline{\text { STROBE }}$ pulse signal from the computer to the printer. This signal is normally held high by the computer. When the computer has data ready for the printer it sets this signal to a low value for at least 0.5 microseconds. When the printer sees this pulse on the strobe pin, it reads the data that the computer supplies on pins 2 through 9 . Each of these lines carries one bit of information. A logical " 1 " is represented by a high signal level, and a logical " 0 " is represented by a low signal level. The computer must maintain these signals for a period beginning at least 0.5 microseconds before the strobe pulse starts and continuing for at least 0.5 microseconds after the strobe pulse ends.

Figure F-1. The interface timing diagram.

Signal Name	Circuit Example
DATA 1 - DATA 8 (To Printer)	
$\overline{\text { STROBE }}$ (To Printer)	
BUSY, $\overline{A C K}$ (From Printer)	

Figure F-2. Typical interface circuit.
When the printer has successfully received the byte of data from the computer it sets pin 10 low for approximately 9 microseconds. This signal acknowledges the receipt of the data and so is called the $\overline{\mathrm{ACK}}$ (for "acknowledge") signal.

Pin 11 reports when the printer is not able to receive data. The signal is called BUSY. When this signal is high, the printer cannot receive data. This signal will be high during data transfer, when the printer is off-line and when an error condition exists.

The printer will report that it has run out of paper by making
the PAPER OUT signal on pin 12 high. This pin can be held low by turning DIP switch 2-4 off. When the printer is in the on-line state pin 13 is held high. This signal (SELECTED) tells the computer that the printer is ready to receive data.

Pins 14, 15, 34 and 35 are not used, while pins 16, 17, 19-30

Table F-1
 Parallel interface pin functions

Pin No.	$\begin{array}{l}\text { Signal } \\ \text { Name }\end{array}$	Direction	Function
1	STROBE	IN	$\begin{array}{l}\text { Signals when data is ready to be read. } \\ \text { Signal goes from HIGH to LOW (for at } \\ \text { least 0.5 microseconds) when data is } \\ \text { available. }\end{array}$
2	DATA1	IN	
3	DATA2	IN	$\begin{array}{l}\text { These signals provide the information of } \\ \text { the first to eighth bits of parallel data }\end{array}$
4	DATA3	IN	$\begin{array}{l}\text { Each signal is at HIGH level for a logical }\end{array}$
5	DATA4	IN	and at a LOW level for a logical 0.

and 33 are grounded. Pin 18 is connected to the +5 VDC supply in the printer.

Pin 31 can be used to reset the printer. If this signal ($\overline{\text { RESET }})$ goes low the printer will reinitialize. Pin 32 is used to report error conditions in the printer. This signal ($\overline{\mathrm{ERROR}}$) is high during normal operation and goes low to report that the printer cannot print due to an error condition.

APPENDIX G
 SERIAL INTERFACE SPECIFICATIONS

This printer provides a very flexible RS232C serial interface as an option. It can communicate at rates from 150 to 19,200 baud (bits per second) and supports four different kinds of handshaking. This interface can also function as a 20 mA current loop interface. The operating specifications of the interface are as follows:

Data transfer rate: Word length:	150-19200
	1 start bit
	7 or 8 data bits
	Odd, even or no parity
	1 or 2 stop bits
Signal levels:	Mark or logical 1, -3 to -15 volts or current ON
	Space or logical $0,+3$ to +15 volts or current OFF
Handshaking:	Serial BUSY, 1 byte mode
	Serial BUSY, 1 block mode
	ACK mode
	XON/XOFF mode

Note: 19200 baud can be used only with an RS232C interface; it cannot be used with a 20 mA current loop interface.
The optional board has a DB-25 female connector to connect to a computer. The functions of the pins are summarized in Table G-1.

CONFIGURING THE SERIAL INTERFACE

DIP switch on the serial interface board controls the configuration of the serial interface. Table G-2 describes the functions of the individual switches in DIP switch.

Table G-1
Serial interface pin functions

Pin No.	Signal Name	Direction	Function
1	GND	-	Printer's chassis ground.
2	TXD	OUT	This pin carries data from the printer.
3	RXD	IN	This pin carries data to the printer.
4	RTS	OUT	This is ON when the printer is ready to receive data.
5	CTS	IN	This pin is ON when the computer is ready to send data.
6	DSR	IN	This pin is ON when the computer is ready to send data. This printer does not check this pin.
7	GND	-	Signal ground.
8	DCD	IN	This pin is ON when the computer is ready to send data. This printer does not check this pin.
9	TTY TXDR	-	This pin is the return path for data transmitted from the printer on the 20 mA current loop.
10	TTY TXD	OUT	This pin carries data from the printer on the 20 mA current loop.
11	RCH	OUT	This is the signal line for the serial busy protocols. This pin goes OFF when printer's buffer fills, and ON when the printer is ready to receive data. In the busy protocols this line carries the same signal as pin 20.
12	N/C		Unused.
13	GND	-	Signal ground.
14-16	N/C		Unused.
17	TTY TXDR	-	This pin is the return path for data transmitted from the printer on the 20 mA current loop.
18	TTY RXDR	-	This pin is the return path for data transmitted to the printer on the 20 mA current loop.
19	TTY RXD	IN	This pin carries data to the printer on the 20mA current loop.
20	DTR	OUT	The printer turns this pin ON when it is ready to receive data.
21-22	N/C		Unused.
23	TTY RXDR	-	This pin is the return path for data transmitted to the printer on the 20 mA current loop.
24	TTY TXD	OUT	This pin carries data from the printer on the 20 mA current loop.
25	TTY RXD	IN	This pin carries data to the printer on the 20 mA current loop.

> Table G-2
> DIP switch on serial board

Switch	ON	OFF
1	7 data bits	8 data bits
2	Parity checked	No parity
3	Handshaking protocols-see Table G-3	
4	Odd parity	Even parity
5		
6		
7		
8		

Table G-3

Handshaking protocols

Protocol	Switch 3	Switch 4
Serial busy, 1 byte mode	OFF	OFF
Serial busy, 1 block mode	ON	OFF
ACK mode	OFF	ON
XON/XOFF mode	ON	ON

Table G-4
Data transfer rates

Baud rate	Switch 6	Switch 7	Switch 8
150	OFF	OFF	OFF
300	OFF	OFF	ON
600	OFF	ON	OFF
1200	OFF	ON	ON
2400	ON	OFF	OFF
4800	ON	OFF	ON
9600	ON	ON	OFF
19200	ON	ON	ON

THE SERIAL PROTOCOLS

This printer has four serial protocols selected by DIP switches 4 and 5 . Figure G-1 shows a typical byte of serial data and Figure G-2 shows timing charts for the 4 protocols.

Serial busy protocols
In the serial busy protocols, this printer uses DTR (pin 20) and RCH (pin 11) to signal to the computer when it is able to accept
data. These two pins go ON when the printer is ready to accept data. In the 1 byte mode they go OFF after each character is received. In the 1 block mode they only go OFF when the printer's buffer approaches capacity. In both cases they will stay OFF if the buffer is too full to accept more data.

■ XON/XOFF protocol

The XON/XOFF protocol uses the ASCII characters $\langle\mathrm{DC} 1\rangle$ and $\langle\mathrm{DC} 3\rangle$ (sometimes called XON and XOFF, respectively) to communicate with the computer. When the printer's buffer approaches capacity this printer will send a DC3 (ASCII 19) on TXD (pin 2) to tell the computer that it must stop sending data. When the printer is able to receive more data it sends a DC 1 (ASCII 17) on TXD. The computer can then send more data until the printer sends another DC3.

- ACK protocol

In the ACK protocol, this printer sends an ACK (ASCII 6) on TXD (pin 2) each time that it is prepared to receive a byte of data.

Figure G-1. Typical data byte on the serial interface.

Serial busy protocol (1 byte) mode

Serial busy protocol (1 block) mode

XON/XOFF protocol

ACK protocol

DB = Data Hyte

Figure G-2. Serial protocol timing charts.

MEMO

APPENDIX H

CONNECTING WITH COMPUTER

In this appendix, we'll show you how to connect with various computers.

If you cannot find out the name of your computer, your printer dealer will give you advice on connecting this printer to your computer.

CONNECTING WITH IBM-PC AND COMPAQ

Both the IBM Personal Computer and the Compaq computer function the same when connected to this printer. We will discuss the IBM-PC, knowing that all we say works just as well as for the Compaq.
You only need a cable to connect this printer to your IBM-PC. Your printer dealer can furnish this cable, or you can use a standard IBM-PC parallel printer cable for the parallel interface.

> Table H-1
> IBM-PC parallel cable

Printer		IBM-PC Parallel	
Pin No.	Function	Pin No.	Function
1	STROBE	1	STROBE
2	D1	2	D0
3	D2	3	D1
4	D3	4	D2
5	D4	5	D3
6	D5	6	D4
7	D6	7	D5
8	D7	8	D6
9	D8	9	D7
10	ACK	10	ACK
11	BUSY	11	BUSY
12	PAPER END	12	PAPER END
13	SELECTED	13	SELECT
16	GROUND	18-25	GROUND
31	RESET	16	RESET
32	ERROR	15	ERROR

- BASIC programming

When you start writing your own programs there are several things you should know.
IBM BASIC defaults to a printer width of 80. This means that it will automatically insert a carriage return and line feed after every 80 characters. If you want to print lines longer than 80 characters you will need to change the width of the printer. If you set the printer width to 255, then the IBM will never insert a line feed and carriage return, unless you start a new line. (This is what you want usually.) To set the width of the printer to 255 , use this statement:

100 WIDTH "LPT1:", 255

IBM BASIC has one other little trick that will mess up your graphics if you let it. IBM BASIC is very insistent about adding a line feed to a carriage return. This is fine if you are printing text, but if an ASCII 13 pops up in the middle of your graphics printout, IBM BASIC will still add a line feed to it. This will put strange things in the middle of your graphics, and leave you with extra characters at the end of your line.

There is an easy way to avoid this problem. You just open the printer as a random file. The following program shows how this is done.

10 OPEN "LPT1:" AS \#1	' RANDOM ACCESS
20 WIDTH *1, 255	SET WIDTH TO 255
30 PRINT \#1, "TESTING"	' PRINT A LINE
40 PRINT \#1, CHR\$(10)	ADD YOUR OWN LF

- Listing programs

To list programs on this printer, make sure the program is in the IBM's memory and use the LLIST command. This directs the listing to the printer instead of the screen.

CONNECTING WITH APPLE II COMPUTERS

Apple II computers require an interface board (mounted inside the Apple II) and a cable to run this printer. We recommend that you use the grafstar ${ }^{\mathrm{TM}}$ interface for the Apple II, II + ,
and IIe. It comes complete with a cable and is easily installed. A unique feature of the grafstar ${ }^{\mathrm{TM}}$ makes it possible to do some fancy dot graphics programming.
You can, of course, use many of the available parallel interface boards for the Apple II, and an appropriate cable.

Table $\mathrm{H}-2$
Apple parallel cable

Printer		Apple Board	
Pin No.	Function	Pin No.	Function
25	SIG GND	1	SIG GND
26	SIG GND	2	SIG GND
27	SIG GND	3	SIG GND
1	STROBE	4	STROBE
28	SIG GND	5	N/C
2	DATA1	6	DATA1
3	DATA2	7	DATA2
4	DATA3	8	DATA3
5	DATA4	9	DATA4
6	DATA5	10	DATA5
7	DATA6	11	DATA6
8	DATA7	12	DATA7
9	DATA8	13	DATA8
10	ACK	14	ACK
29	SIG GND	15	SIG GND

- Applesoft BASIC

The Apple II computer, using Applesoft BASIC, does not have different types of PRINT statements for the screen and printer. You must add commands to your programs that direct the output of the PRINT statements to the printer. To direct output to the printer (with the interface board in slot \#1) you must use the $P R \# 1$ command. Depending on the version of Applesoft BASIC that you are using this command can take various forms. It is usually one of the following:

10 PR\#1

or
10 PRINT "〈Ctrl-D> PR\#1"
or
10 PRINT CHR\$(4) "PR\#1"

To return output to the screen, the command is $P R \# 0$, in the same form that works for PR \#1.

To allow line length longer than the Apple II usually uses you must add the following statement to your programs:

This allows lines of any length to be sent to the printer and is especially important for dot graphics. (The number 255 in the BASIC statement above could be replaced by any number from 0 to 255 and would set the line length to that value.)
Two codes are particular problem on the Apple II: CHR\$(7) and CHR $\$(9)$. The computer will not send these codes to this printer. Try to avoid using these in dot graphics programs.
The Apple II computer uses $\mathrm{CHR} \$(9)$ as a printer initialization code. It won't send it on to the printer. There is a way to bypass this problem, however. You can change the printer initialization code to a value other than $\mathrm{CHR} \$(9)$ like this:

PR*1
 PRINT CHR\$(9); CHR\$(I)

This makes CHR\$(1) the printer initialization code (and transfers the problems to that code) and allows you to use this printer's tabs.
There is one more way to sneak problem codes past the Apple II's operating system and that's to poke the codes directly to the output port. To send ASCII code 9 , for example, you could do this:
$100 \mathrm{~N}=9$
110 IF PEEK (49601) >127 THEN 110
120 POKE 49296, N

Line 110 checks the printer's status, and when it's okay, line 120 pokes the code to the printer.

- Listing programs

To make a listing of your BASIC programs on this printer from your Apple II computer you must take the following steps:

1 . Be sure that the program that you wish to list is in the memory of the Apple II.
2. Direct the output to the printer by typing PR\#1.
3. Type LIST to start the listing.
4. When the listing is finished, type $P R \# 0$ to redirect the output to the screen.

CONNECTING WITH TRS-80 COMPUTERS

All that's required to connect this printer to your TRS-80 is a cable. It is available at your printer dealer.

Table H-3
TRS-80 Model I parallel cable

Printer			TRS-80 Model I	
Pin No.	Function		Pin No.	Function
1	STROBE		1	STROBE
2	D1	-	3	D1
3	D2	-	7	D2
4	D3	-	9	D3
5	D4	-	11	D4
6	D5	\square	13	D5
7	D6	\square	15	D6
8	D7	\square	17	D8
9	D8	\square	21	READY

Table H-4
TRS-80 Model II parallel cable

Printer		TRS-80 Model II	
Pin No.	Function	Pin No.	Function
1	STROBE	1	STROBE
2	D1	3	D1
3	D2	5	D2
4	D3	7	D3
5	D4	9	D4
6	D5	11	D5
7	D6	13	D6
8	D7	15	D7
9	D8	17	D8
10	ACK	19	ACK
11	BUSY	21	BUSY

\square TRS-80 BASIC

You may have to initialize your Model II to direct LPRINT statements to the printer. Use the SYSTEM "FORMS" command to do it.
TRS-80 uses another version of Microsoft BASIC. TRS-80 does have a few unique "problem codes". They are $0,10,11$, and 12 . None of these are passed properly to the printer.

You can bypass the TRS-80's BASIC and send these codes directly to the printer with the following short routine. The variable N must be set equal to the code that you wish to pass (in our example it's 0).
$90 \mathrm{~N}=0$
100 IF PEEK (14312) < > 63 THEN 100
110 POKE 14312,N

Or you can use this special printer driver that will solve all your problems. Just run this program first, and then any codes sent by a BASIC program will be sent directly to the printer. This program is for the TRS-80 Model III.

5 REM DRIVER FOR TRS-80 III
$10 \mathrm{AD}=16571$
20 FOR I=0 TO 14
30 READ A: POKE AD+1, A
40 NEXT I
50 POKE 16422,187
60 POKE 16423,64
70 DATA $33,232,55,203,126,32,252,33,17,0,57,126$, 211,251,201
80 END

And here is a version for the TRS-80 Model I.

5 REM DRIVER FOR TRS-80 I
10 AD=16571
20 FOR I=0 TO 15
30 READ A: POKE AD+1, A
40 NEXT I
50 POKE 16422,187
60 POKE 16423,64
70 DATA $33,232,55,203$, $\mathbf{2} 26,32,252,33,17,0,57,126,50$, 232,55,201
80 END

- Listing programs

To list a BASIC program that is in your TRS-80's memory on
this printer, type LLIST. This directs the listing to the printer instead of the screen.

CONNECTING WITH KAYPRO, OSBORNE, AND OTHER CP/M COMPUTERS

All that you need to connect this printer to an Osborne 1 or Kaypro computer is a cable. Your printer dealer can provide the cable that you need.

Table H-5
 Kaypro parallel cable

Printer		Kaypro	
Pin No.	Function	Pin No.	Function
1	STROBE	1	STROBE
2	DATA1	2	DATA1
3	DATA2	3	DATA2
4	DATA3	4	DATA3
5	DATA4	5	DATA4
6	DATA5	6	DATA5
7	DATA6	7	DATA6
8	DATA7	8	DATA7
9	DATA8	9	DATA8
11	BUSY	11	BUSY
16	SIG GND	16	SIG GND

Table H-6
 Osborne 1 parallel cable

Printer		Osborne 1	
Pin No.	Function	Pin No.	Function
2	DATA1	1	DATA0
6	DATA5	2	DATA4
3	DATA2	3	DATA1
7	DATA6	4	DATA5
4	DATA3	5	DATA2
8	DATA7	6	DATA6
5	DATA4	7	DATA3
9	DATA8	8	DATA7
1	STROBE	11	STROBE
11	BUSY	15	BUSY
16	SIG GND	16	SIG GND

Using MBASIC
Many CP/M computers use Microsoft BASIC (called MBASIC). MBASIC is a very close relative of the IBMMicrosoft BASIC. The only difference is that MBASIC "inter-
prets" $\mathrm{CHR} \$(9)$ and substitutes a group of spaces to simulate a tab. You can send a horizontal tab to this printer by using CHR $\$(137)$ instead of $\mathrm{CHR} \$(9)$.

Some versions of Microsoft BASIC will add a carriage return and line feed at the end of every 80 (or sometimes 132) characters. To print lines longer than 80 (or 132) characters (as when doing dot graphics) you must define a wider printer width. The following statement will prevent the computer from inserting unwanted codes.

10 WIDTH LPRINT 255

- Listing programs

Microsoft BASIC uses the "L" prefix on several commands to direct them to the printer. To list programs on the printer, just type LLIST. To direct program output to the printer, use LPRINT in place of PRINT.

